GenomeStudio® Data Analysis Software

Illumina has created a comprehensive suite of data analysis tools to support a wide range of genetic analysis assays. This single software package provides data visualization and results analysis for all Illumina assay platforms.

GenomeStudio Software Highlights

- **Broad Set of Tools**
 Analyze data generated from all Illumina platforms, sequencing and array.
- **Integrated Analysis**
 Combine data from more than one assay type in the same project.
- **Sophisticated Platform**
 Use high-performance algorithms and statistics calculations for a wide range of supported applications.
- **Open Architecture**
 Leverage plug-ins and application programming interfaces (APIs) to facilitate data export for secondary or tertiary analysis.

Introduction

Illumina leads the industry with a broad spectrum of innovative and powerful genetic assays. The Illumina GenomeStudio Data Analysis Software supports researchers’ equally diverse needs for data analysis. Scientists using any of Illumina’s platforms—Genome Analyzer™, MiSeq®, or HiSeq® 2500 systems for next-generation sequencing; HiScan® or iScan System for BeadArray technology—can use the highly visual and intuitive GenomeStudio software for primary analysis of data generated with Illumina assays (Figure 1).

Integrated Framework

GenomeStudio software consists of several assay-specific modules, integrated into a single platform. The common framework provides a set of intuitive graphical user interface (GUI) and data visualization features for the control and display of results generated by individual modules. Thorough understanding of the massive amounts of data generated by Illumina assays may require multi-modal examination and integration of information gleaned from a 10,000-foot view all the way down to a fine-grained single-feature view. GenomeStudio framework displays results at all scales to enable researchers to effectively examine high-resolution genome-wide data.

Project Creation Wizard

GenomeStudio software makes it easy to create new projects and identify input data locations with an intuitive wizard interface. Once a project is created, users can easily visualize and display all data associated with each experiment type.

Users with the optional Infinium® LIMS, sample tracking, and robotic automation control can take advantage of GenomeStudio software integration for increased efficiency in overall project management for all Infinium genotyping assays. These systems, custom designed for Illumina workflows, allow labs to maximize their throughput.

Data Visualization

Genome-wide orientation and broad trends can be quickly seen when data are displayed in the Illumina Genome Viewer (IGV). Chromosome- or region-level trends of sequence or array data are visualized in the Illumina Chromosome Browser (ICB). The ICB can be used to identify structural aberrants, gene expression levels, protein binding sites, or methylation of CpG islands in promoter regions. For higher resolution analysis, particularly with sequencing data, researchers can zoom in to...
see single base calls in the Illumina Sequence Viewer (ISV) to precisely identify individual SNPs, CpG loci, splice junctions, or cSNPs.

To find trends across samples, markers, or different assays, the GenomeStudio framework provides a wide range of graphical plotting and display tools (Table 1). Researchers can choose to display data as line graphs, histograms, scatterplots, pie charts, dendrograms, box plots, frequency plots, or heat maps. These tools are used to easily compare samples from different experimental conditions in order to identify differential expression levels, protein expression, or methylation levels.

When trends or interesting regions are identified with graphical analysis tools, looking at individual data points becomes essential. GenomeStudio software supports this single-site level of analysis of individual SNP genotypes, splice junctions, gene or exon expression levels, CpG loci methylation status, or protein binding site occupation levels with table displays. Table views are customizable for sorting and to show or hide various data categories. Table data can also be exported in formats compatible with other downstream analysis tools.

Controls Dashboard

Illumina array-based assays, including Infinium, GoldenGate® Genotyping or Methylation Profiling, Direct Hyb, or DASL® assays contain internal sample-dependent and sample-independent controls so researchers have confidence that they are producing the highest quality data. The performance of all controls can be easily monitored with the GenomeStudio software integrated controls dashboard.
Data Sheet: Systems and Software

The module (Figure 3) intentionally does not call polyploid genotypes. Instead, it allows the user to factor in experimental design and sample biology, and combine the population-level cluster analysis to intelligently call genotypes in a workflow outside of GenomeStudio. The flexibility built into the module allows for clustering of one, several, or all SNPs simultaneously. Once parameters are selected, they can be saved for automated clustering of new sample sets.

Gene Expression (GX) Module

Data from Direct Hyb, DASL, and Whole-Genome DASL gene expression profiling assays generated using the iScan System are analyzed using the Gene Expression (GX) Module. The results generated using this module provide meaningful conclusions from the continuous expression data on gene-level statistical analysis tools. Differential expression analysis can be visualized as line plots, histograms, dendrograms, box plots, heat maps, scatter plots, frequency plots, pie charts, samples tables, and gene clustering diagrams (Figure 4). Simplified data management tools include hierarchical organization of samples, groups, group sets, and all associated project analysis.

Methylation (M) Module

DNA methylation data from scanned microarray images collected from the iScan System are analyzed with the Methylation (M) Module. This module calculates methylation levels (beta values) and analyzes differences between experimental groups. CpG island methylation status is visualized across the genome with the IGV and ICB. Results from single-site resolution data are visualized as line plots, bar graphs, scatter plots, frequency plots, pie charts, histograms, dendrograms, box plots, or heat maps. Methylation data can also be combined with gene expression profiling experiments within the same GenomeStudio project to study any correlation between levels of methylated sites (beta values) and differential gene expression levels (p-values).

Sequencing Applications

DNA Sequencing (DS) Module

DNA sequencing data generated using the Genome Analyzer or HiSeq instruments and software tools can be analyzed to discover and confirm SNPs and chromosomal breakpoint regions in the DNA Sequencing (DS) Module. Visualization tools display consensus reads in the reassembled genome and indicate SNPs with colored letters (Figure 5). Newly discovered SNPs can be exported to use in customized iSelect® genotyping array designs.

A locus analyzed within the Genotyping Module (a), which assumes diploidy, is compared to the same locus with samples assigned to cluster membership within the Polyploid Clustering Module (b). Poly call rate for this locus is higher in (b) than in (a) due to the higher number of samples with cluster assignment. The Polyploid Clustering Module does not call genotypes, providing researchers with the flexibility to determine genotype assignment based on the known biology of the organism.

Figure 3: Polyploid Clustering Module

A locus analyzed within the Genotyping Module (a), which assumes diploidy, is compared to the same locus with samples assigned to cluster membership within the Polyploid Clustering Module (b). Poly call rate for this locus is higher in (b) than in (a) due to the higher number of samples with cluster assignment. The Polyploid Clustering Module does not call genotypes, providing researchers with the flexibility to determine genotype assignment based on the known biology of the organism.

The module (Figure 3) intentionally does not call polyploid genotypes. Instead, it allows the user to factor in experimental design and sample biology, and combine the population-level cluster analysis to intelligently call genotypes in a workflow outside of GenomeStudio. The flexibility built into the module allows for clustering of one, several, or all SNPs simultaneously. Once parameters are selected, they can be saved for automated clustering of new sample sets.

Gene Expression (GX) Module

Data from Direct Hyb, DASL, and Whole-Genome DASL gene expression profiling assays generated using the iScan System are analyzed using the Gene Expression (GX) Module. The results generated using this module provide meaningful conclusions from the continuous expression data on gene-level statistical analysis tools. Differential expression analysis can be visualized as line plots, histograms, dendrograms, box plots, heat maps, scatter plots, frequency plots, pie charts, samples tables, and gene clustering diagrams (Figure 4). Simplified data management tools include hierarchical organization of samples, groups, group sets, and all associated project analysis.

Methylation (M) Module

DNA methylation data from scanned microarray images collected from the iScan System are analyzed with the Methylation (M) Module. This module calculates methylation levels (beta values) and analyzes differences between experimental groups. CpG island methylation status is visualized across the genome with the IGV and ICB. Results from single-site resolution data are visualized as line plots, bar graphs, scatter plots, frequency plots, pie charts, histograms, dendrograms, box plots, or heat maps. Methylation data can also be combined with gene expression profiling experiments within the same GenomeStudio project to study any correlation between levels of methylated sites (beta values) and differential gene expression levels (p-values).

Sequencing Applications

DNA Sequencing (DS) Module

DNA sequencing data generated using the Genome Analyzer or HiSeq instruments and software tools can be analyzed to discover and confirm SNPs and chromosomal breakpoint regions in the DNA Sequencing (DS) Module. Visualization tools display consensus reads in the reassembled genome and indicate SNPs with colored letters (Figure 5). Newly discovered SNPs can be exported to use in customized iSelect® genotyping array designs.

Figure 3: Polyploid Clustering Module

A locus analyzed within the Genotyping Module (a), which assumes diploidy, is compared to the same locus with samples assigned to cluster membership within the Polyploid Clustering Module (b). Poly call rate for this locus is higher in (b) than in (a) due to the higher number of samples with cluster assignment. The Polyploid Clustering Module does not call genotypes, providing researchers with the flexibility to determine genotype assignment based on the known biology of the organism.

The module (Figure 3) intentionally does not call polyploid genotypes. Instead, it allows the user to factor in experimental design and sample biology, and combine the population-level cluster analysis to intelligently call genotypes in a workflow outside of GenomeStudio. The flexibility built into the module allows for clustering of one, several, or all SNPs simultaneously. Once parameters are selected, they can be saved for automated clustering of new sample sets.

Gene Expression (GX) Module

Data from Direct Hyb, DASL, and Whole-Genome DASL gene expression profiling assays generated using the iScan System are analyzed using the Gene Expression (GX) Module. The results generated using this module provide meaningful conclusions from the continuous expression data on gene-level statistical analysis tools. Differential expression analysis can be visualized as line plots, histograms, dendrograms, box plots, heat maps, scatter plots, frequency plots, pie charts, samples tables, and gene clustering diagrams (Figure 4). Simplified data management tools include hierarchical organization of samples, groups, group sets, and all associated project analysis.

Methylation (M) Module

DNA methylation data from scanned microarray images collected from the iScan System are analyzed with the Methylation (M) Module. This module calculates methylation levels (beta values) and analyzes differences between experimental groups. CpG island methylation status is visualized across the genome with the IGV and ICB. Results from single-site resolution data are visualized as line plots, bar graphs, scatter plots, frequency plots, pie charts, histograms, dendrograms, box plots, or heat maps. Methylation data can also be combined with gene expression profiling experiments within the same GenomeStudio project to study any correlation between levels of methylated sites (beta values) and differential gene expression levels (p-values).

Sequencing Applications

DNA Sequencing (DS) Module

DNA sequencing data generated using the Genome Analyzer or HiSeq instruments and software tools can be analyzed to discover and confirm SNPs and chromosomal breakpoint regions in the DNA Sequencing (DS) Module. Visualization tools display consensus reads in the reassembled genome and indicate SNPs with colored letters (Figure 5). Newly discovered SNPs can be exported to use in customized iSelect® genotyping array designs.
ChIP Sequencing (CS) Module

Data from whole-genome chromatin immunoprecipitation sequencing experiments performed using the Genome Analyzer or HiSeq instruments and software can be parsed to the GenomeStudio ChIP Sequencing (CS) Module to create global binding site maps of DNA-associated proteins. Differential binding levels between experimental groups can be identified by comparing sequences, regions, and peaks in table or chromosome views.

RNA Sequencing (RS) Module

Data generated from mRNA sequencing experiments using the Genome Analyzer or HiSeq instruments and software tools are displayed in the RNA Sequencing (RS) Module as expression levels and variants discovered. By aggregating data from the software, the RS Module is able to count the abundance of reads falling within specific exons, genes, and splice junctions. Data are then graphically displayed as tables or plots within GenomeStudio software (Figure 6). Genome views display consensus reads in the transcriptome by aligning reads to known abundant sequences and splice junctions. Coding SNPs and splice variants are identified and confirmed visually with single-base resolution in the ICB.

Integrated Analysis From Multiple Applications

The research community is taking advantage of the multiple types of assays and platforms offered by Illumina to perform a variety of genetic variation analysis studies. GenomeStudio software supports these powerful integrative studies with the ability to combine data sets from different assay types in a single project requiring minimal data handling and preparation by researchers. For example, data from methylation and gene expression assays can be analyzed together in a single GenomeStudio GX module project table where combined statistics are shown and integrated plots generated.

Sophisticated Analysis Algorithms

GenomeStudio software is part of the overall molecular biology informatics platform supporting all Illumina assays. Primary data analysis involves several algorithms that are either integrated with GenomeStudio software or in the upstream Pipeline software. Primary data analysis functions for genotype calling, CNV identification, sequence read alignment, exon and splice junction counting, and SNP calling tools are provided by algorithms such as GenCall, GenTrain, cnvPartition, ELAND, and CASAVA.

GenCall

By comparing the two-color signal intensities produced by a BeadChip marker to canonical genotype clusters, genotypes can be called. The millions of calls resulting from Infinium BeadChip assays are made quickly and reproducibly for display in GenomeStudio software with the integrated GenCall algorithm. Cluster position identification, when necessary, is performed by the GenTrain algorithm.

cnvPartition

cnvPartition uses Illumina BeadChip genotyping array data (signal intensities and genotype calls) to identify regions of unexpected copy number and calculate the copy numbers of those regions with confidence scores. The copy number values are then used to create CNV regions and bookmarks in GenomeStudio software for visualization of aberrant chromosomal regions across the genome.

Table 2: Minimum GenomeStudio System Recommendations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sequencing data analysis</th>
<th>Microarray data analysis</th>
<th>Microarray and sequencing data analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Speed</td>
<td>2.0 GHz or greater</td>
<td>2.0 GHz or greater</td>
<td>2.0 GHz or greater</td>
</tr>
<tr>
<td>Processor</td>
<td>64-bit</td>
<td>64-bit</td>
<td>64-bit</td>
</tr>
<tr>
<td>Memory</td>
<td>8 GB or more</td>
<td>8 GB or more</td>
<td>8 GB or more</td>
</tr>
<tr>
<td>Hard Drive</td>
<td>250 GB or larger</td>
<td>250 GB or larger</td>
<td>250 GB or larger</td>
</tr>
<tr>
<td>Operating System</td>
<td>Windows XP, Vista, or 7</td>
<td>Windows Vista or 7</td>
<td>Windows XP, Vista, or 7</td>
</tr>
</tbody>
</table>

Figure 6: RNA Sequencing Module Sequencing and Alleles Table

Sequence information for more than 130 million reads from a flow cell is accessible and viewable in real-time in the Sequences Table of the RNA Sequencing Module (left). All called cSNPs can be individually explored in depth with the Alleles Table (right).
ELAND and CASAVA

Software outputs processed sequence data that GenomeStudio modules display graphically. Single or paired-end sequence read alignments to a reference sequence are performed by ELAND.

The CASAVA software package performs post-sequencing analysis (including SNP allele calls and counts of exons, genes, and splice junctions from RNA samples) of data from reads aligned to the reference genome.

Open Architecture

GenomeStudio software offers a flexible and open architecture for easy integration with third-party applications and tools. Available application programming interfaces (API) ensure that GenomeStudio software serves as a robust core of any analysis workflow. GenomeStudio software offers an API for each module that permits users to create report plug-ins (dlls) for parsing data from GenomeStudio software to downstream analysis tools. The illumina•Connect third-party partnership program encourages informatics software vendors and the open source community to leverage this open architecture. This program has led to several custom report plug-ins created and supported by various illumina•Connect partners².

Summary

GenomeStudio software provides a diverse and integrated platform for data analysis of Illumina assays. Researchers doing sequencing or array experiments use the same powerful software package. The graphical display of results generated from primary data analysis with assay-specific modules supports high-level and in-depth views of whole-genome variation. Integrated analysis is directly supported by combining data from different modules into a single project.

Ordering Information

Access to appropriate GenomeStudio modules is included with instrument purchase. Licenses for additional users and applications may be purchased separately. Learn more about this flexible informatics solution and third-party software tools at www.illumina.com/genomestudio.

References

2. www.illumina.com/illuminaconnect
Data Sheet: Systems and Software

Ordering Information

<table>
<thead>
<tr>
<th>Product</th>
<th>Seat License</th>
<th>Catalog No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenomeStudio DNA Sequencing Module</td>
<td>Single Seat</td>
<td>SW-600-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-600-5001</td>
</tr>
<tr>
<td>GenomeStudio ChIP-Seq Module</td>
<td>Single Seat</td>
<td>SW-500-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-500-5001</td>
</tr>
<tr>
<td>GenomeStudio RNA Sequencing Module</td>
<td>Single Seat</td>
<td>SW-700-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-700-5001</td>
</tr>
<tr>
<td>GenomeStudio Genotyping Module</td>
<td>Single Seat</td>
<td>SW-100-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-100-5001</td>
</tr>
<tr>
<td>GenomeStudio Gene Expression Module</td>
<td>Single Seat</td>
<td>SW-200-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-200-5001</td>
</tr>
<tr>
<td>GenomeStudio Methylation Module</td>
<td>Single Seat</td>
<td>SW-300-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-300-5001</td>
</tr>
<tr>
<td>GenomeStudio Sequencing Bundle (Includes DS, RS, CS Modules)</td>
<td>Single Seat</td>
<td>SW-820-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-820-5001</td>
</tr>
<tr>
<td></td>
<td>Enterprise</td>
<td>SW-820-2001</td>
</tr>
<tr>
<td>GenomeStudio Microarray Bundle (Includes GT, QX, M Modules)</td>
<td>Single Seat</td>
<td>SW-810-1001</td>
</tr>
<tr>
<td></td>
<td>Five Seat</td>
<td>SW-810-5001</td>
</tr>
<tr>
<td></td>
<td>Enterprise</td>
<td>SW-810-2001</td>
</tr>
<tr>
<td>GenomeStudio Software Integrated System Bundle (All Modules)</td>
<td>Five Seat</td>
<td>SW-800-5001</td>
</tr>
<tr>
<td></td>
<td>Enterprise</td>
<td>SW-800-2001</td>
</tr>
</tbody>
</table>