AmpliSeq for Illumina Focus Panel Checklist

Quantify and Dilute DNA

- \Box 1 Quantify DNA using a fluorometric method.
- ☐ 2 If enough DNA is available, dilute to an intermediate concentration as follows.
 - a Dilute to a concentration of ~20–50 ng/µl using Low TE.
 - b Requantify the diluted DNA using the same fluorometric quantification method.
- □ 3 Dilute DNA to desired final concentration using Low TE.

Amplify DNA Targets

Add the following volumes to one well of a PCR plate. For multiple samples, combine all reagents except DNA in a 1.5 ml tube. Pipette or vortex briefly, and then centrifuge briefly. Pipette into each well, and then add DNA.

Reagent	Volume (µl)
5X AmpliSeq HiFi Mix (red cap)	4
5X AmpliSeq Focus DNA Panel (blue cap)	4
[Optional] 20X AmpliSeq Sample ID Panel for Illumina	1
DNA (1-100 ng)	≤ 12 (≤ 11 if using AmpliSeq Sample ID Panel for Illumina)
Nuclease-free water	To reach total required volume
Total Volume	20

- 2 Pipette to mix, seal the plate, and then centrifuge briefly.
- □ 3 Place on the thermal cycler, cover with a compression pad (if applicable), and run the AMP_DNA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

Partially Digest Amplicons

- □ 1 Briefly centrifuge to collect contents.
- □ 2 Add 2 µl FuPa Reagent (brown cap) to each target amplification reaction.
- \Box 3 Vortex briefly, and then centrifuge briefly.
- ☐ 4 Place on the thermal cycler, cover with a compression pad (if applicable), and run the FUPA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10° C for up to 1 hour. For longer periods, store at -25° C to -15° C.

AmpliSeq for Illumina Focus Panel Checklist

Quantify and Dilute RNA

- \Box 1 Quantify RNA using a fluorometric method.
- 2 If enough RNA is available, dilute to an intermediate concentration as follows.
 - a Dilute to a concentration of ~20–50 ng/µl using nuclease-free water.
 - b Requantify the diluted RNA.
- \Box 3 Dilute RNA to desired final concentration.

Reverse Transcribe RNA

- I For one sample, combine the following volumes in one well of a 96-well PCR plate. For multiple samples, prepare a master mix without RNA in a 1.5 ml tube.
 - ▶ 5X AmpliSeq cDNA Reaction Mix (2 µl)
 - 10X AmpliSeq RT Enzyme Mix (1 μl)
 - Fotal RNA (1–100 ng) (\leq 7 µl)
 - Nuclease-free water (to 10 µl)
- 2 Seal the plate.
- \Box 3 Vortex thoroughly, and then centrifuge briefly.
- ☐ 4 Place on the thermal cycler, cover with a compression pad (if applicable), and run the RT program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 16 hours. For longer durations, store at -25°C to -15°C.

Amplify cDNA Targets

- \Box 1 Briefly centrifuge the plate to collect contents.
- 2 Add the following volumes per sample to each well.
 - 5X AmpliSeq HiFi Mix (4 μl) (red cap)
 - 5X AmpliSeq Focus RNA Panel (4 µl) (red cap)
 - Nuclease-free water (2 µl)
- □ 3 Pipette to mix.
- \Box 4 Seal the plate, and then centrifuge briefly.
- □ 5 Place on the thermal cycler, cover with a compression pad (if applicable), and run the AMP_RNA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C overnight or store at -25°C to -15°C.

AmpliSeq for Illumina Focus Panel Checklist

Partially Digest Amplicons

- \Box 1 Briefly centrifuge to collect contents.
- □ 2 Add 2 µl FuPa Reagent (brown cap) to each target amplification reaction.
- \Box 3 Vortex briefly, and then centrifuge briefly.
- ☐ 4 Place on the thermal cycler, cover with a compression pad (if applicable), and run the FUPA program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 1 hour. For longer periods, store at -25°C to -15°C.

Transfer Amplicons

- □ 1 Briefly centrifuge the DNA and RNA library plates to collect contents.
- Transfer the amplicons from the RNA plate to the corresponding empty wells of the DNA plate.

Ligate Indexes

□ 1 Add the following volumes *in the order listed* to each well.

Reagent	Volume (µl)
Switch Solution (yellow cap)	4
AmpliSeq CD Indexes or UD Indexes for Illumina	2
DNA Ligase (blue cap)	2

- \Box 2 Seal the library plate.
- \Box 3 Vortex briefly, and then centrifuge briefly.
- ☐ 4 Place on the thermal cycler, cover with a compression pad (if applicable), and run the LIGATE program.
- 5 If the index plate contains unused indexes, seal the plate and return to storage.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

AmpliSeq for Illumina Focus Panel Checklist

Clean Up Library

- \Box 1 Briefly centrifuge the plate to collect contents.
- $\hfill 2$ $\hfill Add$ 30 μI AMPure XP beads to each library.
- \Box 3 Vortex briefly.
- 4 Inspect each well to make sure that the mixture is homogeneous.
- \Box 5 Centrifuge briefly.
- \Box 6 Incubate at room temperature for 5 minutes.
- □ 7 Place on a magnetic stand until the mixture is clear.
- □8 Remove and discard supernatant.
- \Box 9 Wash with 150 µl 70% EtOH.
- \Box 10 Wash again with 150 μl 70% EtOH.
- □ 11 Centrifuge briefly.
- \Box 12 Place on the magnetic stand.
- 13 Immediately remove all residual EtOH as follows.
 - a Use a 20 µl pipette to remove residual EtOH.
 - \Box b Air-dry on the magnetic stand.
 - C Inspect each well to make sure that the EtOH has evaporated.
 - d If EtOH remains, continue to air-dry until EtOH is no longer visible.
- □ 14 If you are using the AmpliSeq Library Equalizer for Illumina, proceed to *Equalize Libraries* on page 5. Otherwise, continue to *Amplify Library* on page 4.

Amplify Library

□ 1 For each reaction, combine the following volumes.

Reagent	Volume (µl)
1X Lib Amp Mix (black cap)	45
10X Library Amp Primers (pink cap)	5

- \Box 2 Vortex briefly, and then centrifuge briefly.
- \Box 3 Remove the plate from the magnetic stand.
- ☐ 4 Add 50 µl amplification master mix to each library well.
- \Box 5 Vortex briefly, and then centrifuge briefly.
- □ 6 Place on the thermal cycler, cover with a compression pad (if applicable), and run the AMP_7 program.

SAFE STOPPING POINT

If you are stopping, leave the plate on the thermal cycler at 10°C for up to 24 hours. For longer durations, store at -25°C to -15°C.

Perform Second Cleanup

- □ 1 Briefly centrifuge the plate to collect contents.
- \Box 2 Add 25 µl AMPure XP beads to each well.
- \Box 3 Vortex briefly, and then centrifuge briefly.
- \Box 4 Incubate at room temperature for 5 minutes.
- □ 5 Place the plate on a magnetic stand until the liquid is clear.
- ☐ 6 Transfer the *entire* supernatant (~75 µl), *which contains the desired amplicon library*, to a new plate.
- \Box 7 Add 60 µl AMPure XP beads.
- \square 8 Vortex briefly, and then centrifuge briefly.
- \Box 9 Incubate at room temperature for 5 minutes.
- □ 10 Place on the magnetic stand until the liquid is clear.
- 11 Without disturbing the beads, remove and discard supernatant.
- \Box 12 Wash with 150 µl 70% EtOH.
- \Box 13 Wash again with 150 μl 70% EtOH.
- □ 14 Use a 20 µl pipette to remove and discard residual EtOH.
- \Box 15 Air-dry on the magnetic stand for 5 minutes.
- \Box 16 Remove from the magnetic stand.
- \Box 17 Add 30 μI Low TE to each well.
- \Box 18 Vortex briefly, and then centrifuge briefly.
- □ 19 Place on the magnetic stand and wait until the liquid is clear (~5 minutes).
- \Box 20 Transfer 27 µl supernatant to a new plate.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

AmpliSeq for Illumina Focus Panel Checklist

Check Libraries

- I Place the plate on the magnetic stand. Keep the plate on the stand while performing normalization and pooling.
- \square 2 Assess library quality.
- \Box 3 Quantify the library.

Dilute Libraries to the Starting Concentration

- 1 Calculate the molarity value of the library or pooled libraries.
- □ 2 Using the molarity value, calculate the volumes of Low TE and library needed to dilute libraries to the starting concentration.

Sequencing System	Starting Concentration (nM)	Final Loading Concentration (pM)
iSeq 100 System	2	50
MiniSeq System	2	1.1–1.9
MiSeq System (v3 reagents)	2	7–9

□ 3 Dilute libraries using Low TE:

- Libraries quantified as a pool—Dilute the pool to the starting concentration.
- Libraries quantified individually—Dilute each library to the starting concentration. Add 10 µl each diluted library to a tube.
- ☐ 4 Dilute to the final loading concentration.

Equalize Libraries

□ 1 Use the following steps to normalize library concentration without quantification using the AmpliSeq Library Equalizer for Illumina.

AmpliSeq for Illumina Focus Panel Checklist

Amplify Library

- □ 1 Remove the plate with purified libraries from the magnetic stand.
- 2 For each reaction, combine the following volumes.

Reagent	Volume (µl)
1X Lib Amp Mix (black cap)	45
10X Library Amp Primers (pink cap)	5

- \Box 3 Vortex briefly, and then centrifuge briefly.
- Add 50 μl amplification master mix to each library well.
- □ 5 Place on the thermal cycler, cover with a compression pad (if applicable), and run the EQUAL program.

Wash Equalizer Beads

- 1 For each reaction, combine the following volumes:
 - Equalizer Beads (7 μl)
 - Equalizer Wash Buffer (14 μl)
- 2 Pipette to mix.
- □ 3 Place on the magnetic stand until liquid is clear.
- 4 Remove and discard all supernatant.
- \Box 5 Remove from the magnetic stand.
- 6 For each reaction, add 7 µl Equalizer Wash Buffer. Pipette to resuspend.

Add Equalizer Capture

- □ 1 Briefly centrifuge the library plate to collect contents, and then unseal.
- 2 Place on the magnetic stand until liquid is clear.
- \Box 3 Transfer 45 µl of supernatant to a new plate.
- □ 4 Add 10 µl Equalizer Capture.
- 5 Seal the plate, vortex to mix, and then briefly centrifuge to collect contents.
- 6 Incubate at room temperature for 5 minutes.

AmpliSeq for Illumina Focus Panel Checklist

Perform Second Cleanup

- □ 1 Unseal the plate.
- 2 Vortex or pipette washed Equalizer Beads to mix.
- $\hfill\square$ 3 $\,$ Add 6 μI Equalizer Beads .
- 4 Seal the plate, vortex thoroughly, and then centrifuge briefly.
- \Box 5 Incubate at room temperature for 5 minutes.
- 6 Place on the magnetic stand until liquid is clear.
- \Box 7 Unseal the plate.
- \square 8 Remove and discard all supernatant.

Elute Library

- \Box 1 Remove the plate from the magnetic stand.
- \Box 2 Add 30 µl Equalizer Elution Buffer .
- □ 3 Seal the plate, vortex thoroughly, and then centrifuge briefly.
- ☐ 4 Elute the library by incubating on a thermal cycler at 45°C for 5 minutes.
- 5 Place on the magnetic stand until liquid is clear.
- \Box 6 Unseal the plate.
- \Box 7 Transfer 27 µl supernatant to a new plate.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Denature and Dilute Libraries

□ 1 Denature and dilute libraries for loading on the sequencing instrument you are using.