Infinium XT - HT Workflow Checklist (no Illumina LIMS)

Amplify DNA (Pre-Amp)

- □ 1 Select **MSA7 HT Tasks | Make MSA7 HT**. □ a Select the DNA plate type.
- 2 Add reagents to quarter reservoirs (these volumes are for 3 plates):

Reagent	Volume
MA1	9 ml
0.1 N NaOH	5 ml
MA2	13.5 ml
RAM	13.5 ml

- □ 3 Place the DNA plates and MSA7 plates on the robot deck.
- 4 Select Run.
- 5 Vortex the MSA7 plates at 1600 rpm for 1 minute.
- $\Box 6 \quad \text{Centrifuge at } 280 \times \text{g at room temperature for} \\ 1 \text{ minute.}$

Incubate DNA

□ 1 Incubate the MSA7 plates for 3–24 hours at 37°C.

Fragment DNA

- \Box 1 Centrifuge the MSA7 plates at 280 × g at room temperature for 1 minute.
- 2 Select MSA7 HT Tasks | Fragment MSA7 HT.
- \Box 3 Place the MSA7 plates on the robot deck.
- 4 Add 20 ml FMS to a quarter reservoir for 6 plates.
- 5 Select Run.
- 6 Select OK.
- \Box 7 Vortex at 1600 rpm for 1 minute.
- \square 8 Centrifuge at 280 × g at room temperature for 1 minute.
- 9 Incubate at 37°C for 30 minutes.

SAFE STOPPING POINT

If you are stopping, seal the plate(s), and store at -25°C to -15°C.

illumina

Infinium XT - HT Workflow Checklist (no Illumina LIMS)

Precipitate DNA

	-
	2

Select MSA7 HT Tasks | Precip MSA7 HT.

2 Place the MSA7 plates on the robot deck.

 \Box 3 Add PM1 to a quarter reservoir:

Reagent	Number of Plates	Volume
PM1	1	8 ml
	2	14 ml
	3	21 ml
	4	27 ml
	5	34 ml
	6	40 ml

4 Add 2-propanol to a full reservoir:

Reagent	Number of Plates	Volume
2-propanol	1	25 ml
	2	50 ml
	3	75 ml
	4	100 ml
	5	125 ml
	6	150 ml

5 Select Run.

a Select OK.

 \Box 6 Invert the plates 10 times.

 \Box 7 Centrifuge at 3000 × g at 4°C for 20 minutes.

 \square 8 Invert the plates, and drain the supernatant.

 \Box 9 Tap the plates several times.

 \Box 10 Air dry for 15 minutes.

SAFE STOPPING POINT

If you are stopping, seal the plate(s), and store at -25°C to -15°C.

Resuspend DNA

- 1 Select MSA7 HT Tasks | Resuspend MSA7 HT.
- \Box 2 Place the MSA7 plates on the robot deck.

□ 3 Add RA1 to a quarter reservoir.

Reagent	Number of Plates	Volume
RA1	1	5 ml
	2	8 ml
	3	11 ml
	4	14 ml
	5	17 ml
	6	20 ml

 \Box 4 Apply foil heat seals to the MSA7 plates.

 \Box 5 Incubate for 15 minutes at 48°C.

 \Box 6 Vortex at 1800 rpm for 1 minute.

 \Box 7 Centrifuge at 280 × g at room temperature for 1 minute.

SAFE STOPPING POINT

If you are stopping, store sealed MSA7 plate(s) at 2°C to 8°C for up to 24 hours. If more than 24 hours, store at -25°C to -15°C.

Store sealed RA1 at -25°C to -15°C. If RA1 will be used the next day, seal it, and store it overnight at 4°C.

illumina

Infinium XT - HT Workflow Checklist (no Illumina LIMS)

Hybridize to BeadChip

- 1 Incubate the MSA7 plates at 95°C for 20 minutes.
- \Box 2 Cool at room temperature for 30 minutes.
- \Box 3 Centrifuge at 15001000 × g at room temperature for 1 minute.
- \Box 4 Place the gaskets into the XT Hyb chambers.
- □ 5 Dispense 800 µl PB2 into each reservoir.
- \Box 6 Close the XT Hyb chamber.
- \Box 7 Remove all BeadChips from packaging.
- □ 8 Place up to 2 BeadChips onto each XT dual Hyb insert and baseplate.
- 9 Select MSA7 HT Tasks | Hyb Multi-BC2.
- □ 10 Select the 96-sample BeadChip.
- □ 11 Enter the Number of MSA7 plates.
- 12 Place the XT dual Hyb insert and baseplates onto the robot deck.
- \Box 13 Place the MSA7 plates onto the robot deck.
- □ 14 Place an XT tip guide #1 on top of each XT dual Hyb insert and baseplate.
- \Box 15 Click **Run**, then click **OK**.
- ☐ 16 Remove XT tip guide #1 and replace it with XT tip guide #2, then click **OK**.
- □ 17 Remove XT tip guide #2 and replace it with XT tip guide #3, then click **OK**.
- □ 18 Click **OK**.
- ☐ 19 Remove XT tip guide #3.
- \square 20 Inspect the BeadChips.
- 21 Load the XT dual Hyb insert and baseplates inside the XT Hyb chambers.
- \square 22 Incubate at 48°C for 16 to 24 hours.

Prepare for Next Day

- □ 1 Add 330 ml 100% EtOH to the XC4 bottle and shake.
- 2 Leave the bottle upright on the lab bench overnight.
- □ 3 Soak the EXXT tip guides in 1% aqueous Alconox solution.
- \Box 4 Rinse and dry the EXXT tip guides.

Wash BeadChips

- □ 1 Submerge the wash rack in the 1X PB1 wash.
- 2 Remove the hybridization insert and baseplates.
- □ 3 Remove the BeadChips.
- \Box 4 Remove the cover seals from the BeadChips.
- □ 5 Place the BeadChips into the submerged wash rack.
- 6 Move the wash rack up and down for 1 minute.
- \Box 7 Move the wash rack to the next 1X PB1 Wash.
- 8 Move the wash rack up and down for 1 minute.
- 9 Fill the XCG Flow-Through Chamber assembly tray with 1X PB1.
- 10 Place a BeadChip on a submerged XCG Flow-Through Chamber frame.
- 11 Place an XCG glass back plate onto a submerged BeadChip.
- 12 Attach XCG Flow-Through Chamber clips to each XCG Flow-Through Chamber frame.

Infinium XT - HT Workflow Checklist (no Illumina LIMS)

Extend and Stain (XStain)

- \Box 1 Fill the water circulator.
- 2 Select Robot QC Tasks | Circulator Manager to set to 44°C.
- 3 Select XStain Tasks | XStain XCG BeadChip HT.
- 4 Turn on the iScan systems.
- \Box 5 Add the following reagents to reservoirs:

Reagent	# BeadChips	Volume
95% formamide/1 mM EDTA	24	30 ml
	48	60 ml
RA1	24	30 ml
	48	60 ml
XC3	24	150 ml
	48	250 ml

- \square 18 Submerge the XCG glass back plates in the DI H₂O wash basin.
- \Box 19 Move the staining rack up and down 10 times.
- \Box 20 Soak the BeadChips for 5 minutes.
- \Box 21 Shake the XC4 bottle vigorously.
- 22 Pour 310 ml XC4 into a wash dish.
- \square 23 Move the staining rack to the XC4 wash dish.
- \Box 24 Move the staining rack up and down 10 times.
- \Box 25 Soak the BeadChips for 5 minutes.
- \square 26 Remove the staining rack.
- 27 Dry the BeadChips for 50–55 minutes at 675 mm Hg (0.9 bar).
- 28 Image the BeadChips immediately, or store them, protected from light.

 \Box 6 Place the XStain plates on the robot deck.

- □ 7 Invert the EML tubes to mix, remove the caps, and place the EML tubes on the robot deck.
- \Box 8 Enter the number of BeadChips.
- 9 Select Run.
- 10 Enter the stain temperature listed on the XStain plate.
- 11 Place the XCG Flow-Through Chamber assemblies into the chamber rack.

12 Select OK.

- 13 Remove the XCG Flow-Through Chamber assemblies from the chamber rack.
- \Box 14 Set up PB1 and XC4 wash dishes.
- □ 15 Pour 310 ml PB1 into a wash dish.
- 16 Disassemble each XCG flow-through chamber.
- □ 17 Place BeadChips into a staining rack in the PB1 wash dish.