This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY.

ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE).

© 2015 Illumina, Inc. All rights reserved.

Illumina, 24sure, BaseSpace, BeadArray, BlueFish, BlueFuse, BlueGnome, cBot, CSPro, CytoChip, DesignStudio, Epicentre, GAIIx, Genetic Energy, Genome Analyzer, GenomeStudio, GoldenGate, HiScan, HiSeq, HiSeq X, Infinium, iScan, iSelect, MiSeq, NeoPrep, Nextera, NextBio, NextSeq, Powered by Illumina, SeqMonitor, SureMDA, Tru Genome, TruSeq, TruSight, Understand Your Genome, UYG, VeraCode, verifi, VeriSeq, the pumpkin orange color, and the streaming bases design are trademarks of Illumina, Inc. and/or its affiliate(s) in the U.S. and/or other countries. All other names, logos, and other trademarks are the property of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Part #</th>
<th>Revision</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>15025908</td>
<td>D</td>
<td>June 2015</td>
<td>Corrected the Amplification temperature to 37°C.</td>
</tr>
<tr>
<td>15025908</td>
<td>C</td>
<td>May 2012</td>
<td>Indicated that up to 24 BeadChips can be washed with 550 ml of PB1.</td>
</tr>
<tr>
<td>15025908</td>
<td>B</td>
<td>September 2011</td>
<td>Reagents Supplied table amended to delete part numbers and move descriptions to second column.</td>
</tr>
<tr>
<td>15025908</td>
<td>A</td>
<td>June 2011</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Table of Contents

Revision History ... iii
Table of Contents .. v
List of Tables .. vii

Chapter 1 Overview .. 1
Infinium LCG Quad Assay ... 2
Audience and Purpose ... 3
Infinium LCG Quad Assay ... 4
Illumina Infinium BeadChips .. 9
Illumina Lab Protocols .. 10
Tracking Tools ... 11
Tecan GenePaint .. 14
Imaging Systems .. 15
GenomeStudio Integrated Informatics Platform 16

Chapter 2 Manual Protocol ... 17
Introduction to Infinium LCG Quad Manual Protocol 18
Infinium LCG Quad Manual Workflow 19
Equipment, Materials, and Reagents 21
Quantify DNA (Optional) (Pre-Amp) 23
Make the AMP5 Plate ... 31
Incubate DNA (Post-Amp) .. 35
Fragment DNA (Post-Amp) .. 36
Precipitate DNA (Post-Amp) ... 39
Resuspend DNA (Post-Amp) .. 43
Hybridize to BeadChip (Post-Amp) ... 46
Wash BeadChips (Post-Amp) ... 61
Extend and Stain (XStain) BeadChip (Post-Amp) 73
Image BeadChip .. 93
Illumina GenomeStudio ... 94

Chapter 3 Automated Protocol ... 95
Introduction to Infinium LCG Quad Automated Protocol 96
Infinium LCG Quad Automated Workflow 97
Equipment, Materials, and Reagents 99
Quantify DNA (Optional) (Pre-Amp) 102
Make the AMP5 Plate ... 112
Incubate DNA (Post-Amp) ... 121
Fragment DNA (Post-Amp) ... 123
Precipitate DNA (Post-Amp) ... 129
Resuspend DNA (Post-Amp) ... 137
Hybridize to BeadChip (Post-Amp) .. 142
Wash BeadChips (Post-Amp) ... 160
Extend and Stain (XStain) BeadChip (Post-Amp) 172
Image BeadChip .. 195
Illumina GenomeStudio .. 196

Index ... 197

Technical Assistance ... 199
List of Tables

Table 1 Sample Sheet Guidelines ... 11
Table 2 AutoLoader2 and AutoLoader2x Features .. 15
Table 3 Concentrations of Lambda DNA .. 25
Table 4 Volumes for PicoGreen Reagents ... 27
Table 5 Scan Settings for Infinium LCG Quad ... 93
Table 6 Concentrations of Lambda DNA .. 104
Table 7 Volumes for PicoGreen Reagents ... 106
Table 8 List of Reactions .. 182
Table 9 Scan Settings for Infinium LCG Quad ... 195
Table 10 Illumina General Contact Information ... 199
Table 11 Illumina Customer Support Telephone Numbers 199
Chapter 1

Overview

Introduction to Infinium LCG Quad Assay ... 2
Audience and Purpose ... 3
Infinium LCG Quad Assay .. 4
Illumina Infinium BeadChips ... 9
Illumina Lab Protocols ... 10
Tracking Tools .. 11
Tecan GenePaint .. 14
Imaging Systems ... 15
GenomeStudio Integrated Informatics Platform ... 16
The Illumina® Infinium LCG Quad Assay is an evolution for DNA analysis, by streamlining sample preparation and enabling high multiplexing. Using Infinium I and Infinium II probe designs and dual color channel approach, the Infinium LCG Quad Assay allows DNA analysis of up to several million of SNPs and CNV markers per sample.

The Infinium LCG Quad Assay accomplishes this unlimited multiplexing by combining whole-genome amplification (WGA) sample preparation with direct, array-based capture and enzymatic scoring of the SNP loci. Locus discrimination or copy number (CNV) determination is provided by a combination of high bead type representation per feature, sequence-specific hybridization capture and array-based, single-base primer extension. In the case of the Infinium II probe design, the 3' end of the primer is positioned directly adjacent to the SNP site, or the nonpolymorphic site in the case of nonpolymorphic probes. In the case of the Infinium I probe design, the 3' end of the primer overlaps with the SNP site. If there is a perfect match, extension occurs and signal is generated. If there is a mismatch, extension does not occur and no signal is generated.

Allele-specific single base extension of the primer incorporates a biotin nucleotide or a dinitrophenyl labeled nucleotide. C and G nucleotides are biotin labeled; A and T nucleotides are dinitrophenyl labeled. Signal amplification of the incorporated label further improves the overall signal-to-noise ratio of the assay.

The Infinium LCG Quad Assay offers:
- High multiplexing
- High call rate and accuracy
- Unlimited Genome-wide marker selection
- Single tube amplification, single chip, no PCR
- Minimal risk of carryover contamination
- Low DNA input—400 ng per sample.
- Walk-away automation using Tecan Genesis or Freedom EVO Robots and Tecan GenePaint system
- Compatibility with both Illumina iScan® and HiScan Systems
- Multiple-Sample BeadChip format
Audience and Purpose

This guide is for laboratory technicians running the Infinium LCG Quad Assay. The guide documents the laboratory protocols associated with the assay. Follow all the protocols in the order shown.

Chapter 2 Manual Protocol explains how to run the assay manually in the lab.
Chapter 3 Automated Protocol explains how to automate the protocol with the aid of the Tecan 8-tip robot.

Important Note

Before following any of the procedures in this guide, read the *Infinium Lab Setup and Procedures Guide*, which explains how to equip and run an Infinium LCG Quad Assay laboratory. The guide includes important information on the following topics:

- Prevention of amplification product contamination
- Safety precautions
- Equipment, materials, and reagents
- Standard lab procedures
- Robot use
- BeadChip imaging
- System maintenance
- GenomeStudio controls
- Troubleshooting

The instructions apply equally to all Infinium BeadChips provided by Illumina. All the Infinium LCG Quad documentation assumes that you have already set up the laboratory space and are familiar with the standard procedures and safety precautions.
Infinium LCG Quad Assay

This section describes and illustrates the assay protocol. The assay requires only 400 ng of original DNA sample.

Amplify DNA (Pre-Amp)

The DNA samples are denatured and neutralized to prepare them for amplification.

Figure 1 Denaturing and Neutralizing DNA

Incubate DNA (Post-Amp)

The denatured DNA is isothermally amplified in an overnight step. The whole-genome amplification uniformly increases the amount of the DNA sample by several thousand-fold without significant amplification bias.

Figure 2 Incubating DNA to Amplify
Fragment DNA (Post-Amp)
A controlled enzymatic process fragments the amplified product. The process uses endpoint fragmentation to prevent overfragmentation.

Figure 3 Fragmenting DNA

Precipitate DNA (Post-Amp)
After an isopropanol precipitation, centrifugation at 4°C collects the fragmented DNA.

Figure 4 Precipitating DNA
Resuspend DNA (Post-Amp)

The precipitated DNA is resuspended in Hybridization Buffer.

Figure 5 Resuspending DNA

Hybridize to BeadChip (Post-Amp)

Samples are applied to a BeadChip and separated by an IntelliHyb seal (or gasket). The loaded BeadChip is incubated overnight in the Illumina Hybridization Oven. The amplified and fragmented DNA samples anneal to locus-specific 50-mers during hybridization.

Figure 6 Hybridize to BeadChip
Wash BeadChip (Post-Amp)

Unhybridized and nonspecifically hybridized DNA is washed away and the BeadChip is prepared for staining and extension.

Figure 7 Washing BeadChip

![Washing BeadChip](image)

Extend and Stain (XStain) BeadChip (Post-Amp)

Single-base extension of the oligos on the BeadChip, using the captured DNA as a template, incorporates detectable labels on the BeadChip and determines the genotype call for the sample. XStain occurs in a capillary flow-through chamber.

Figure 8 Extending and Staining BeadChip

![Extending and Staining BeadChip](image)

*Stain in red channel
*Stain in green channel
Image BeadChip (Post-Amp)

The Illumina HiScan or iScan System scans the BeadChip, using a laser to excite the fluorophore of the single-base extension product on the beads. The scanner records high-resolution images of the light emitted from the fluorophores.

Figure 9 Imaging BeadChip
Illumina Infinium BeadChips

Illumina Infinium BeadChips are sophisticated silicon-based array devices. An IntelliHyb seal separates the sample sections of the slide so that you can run multiple samples simultaneously.

Each individual sample section holds oligonucleotide probe sequences that are attached to beads assembled into the microwells of the BeadChip substrate. Because the microwells outnumber the distinct bead types, multiple copies of each bead type are present in the array. This built-in redundancy improves robustness and measurement precision. The BeadChip manufacturing process includes hybridization-based quality controls of each array feature, allowing consistent production of high-quality, reproducible arrays.
Illumina Lab Protocols

Illumina lab protocols are designed to promote efficiency and minimize the risk of contamination. The *Infinium Lab Setup and Procedures Guide* documents standard operating procedures and tools for an Infinium Assay lab and explains how to set up and maintain separate pre- and post-amplification areas. Familiarize yourself with this guide before performing any Infinium assays.

Chapter 2 Manual Protocol and Chapter 3 Automated Protocol show how to perform the assay protocol with clearly divided pre- and post-amplification processes using a manual and automated process respectively.
Tracking Tools

Illumina provides the following tools for sample tracking and guidance in the lab:

- **Experienced User Cards** to guide you through the protocols. There are separate sets of cards for the manual and automated processes.
- **Lab Tracking Form** to map DNA samples to BeadChips and record the barcode of each reagent and plate used in the protocol.
- **Sample sheet template** to record information about your samples for later use in data analysis.

All these documents are available for printing and reference at www.illumina.com/documentation.

Sample Sheet

Illumina recommends that you create a sample sheet to track your samples and assay effectively. The GenomeStudio application uses the sample sheet later for data analysis. For instructions on data analysis, see the GenomeStudio User Guide or Online Help.

Create your sample sheet according to the guidelines provided in the table.

<p>| Table 1 Sample Sheet Guidelines |
|----------|-----------------|------------------|
| Column Heading | Description | Optional (O) or Required (R) |
| Sample_ID | Unique identifier for the sample. | R |
| Sample_Name | Name of the sample. Used only for display in the table. | O |
| Sample_Plate | The barcode of the sample plate for this sample. Used only for display in the table. | O |
| Sample_Well | The sample plate well for this sample. Used only for display in the table. | O |
| SentrixBarcode_A | The barcode of the array product (BeadChip) to which this sample was hybridized, for Manifest A. | R |</p>
<table>
<thead>
<tr>
<th>Column Heading</th>
<th>Description</th>
<th>Optional (O) or Required (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SentrixPosition_A</td>
<td>The position within the array product to which this sample was hybridized, for the manifests in your project.</td>
<td>R</td>
</tr>
<tr>
<td>Gender</td>
<td>Male, Female, or Unknown.</td>
<td>O</td>
</tr>
<tr>
<td>Sample_Group</td>
<td>A group, if any, to which this sample belongs.</td>
<td>O</td>
</tr>
<tr>
<td>Replicate</td>
<td>The Sample_ID of a replicate to this sample. Used in reproducibility error calculations.</td>
<td>O</td>
</tr>
<tr>
<td>Parent1</td>
<td>The Sample_ID of the first parent.</td>
<td>O</td>
</tr>
<tr>
<td>Parent2</td>
<td>The Sample_ID of the second parent.</td>
<td>O</td>
</tr>
<tr>
<td>Notes</td>
<td>Your sample sheet header can contain whatever information you choose. Your sample sheet can contain any number of columns you choose. Your sample sheet must be in a comma-delimited (.csv) file format. Commas in the sample sheet are not allowed. Save the sample sheet under any name you wish; for example, the user-defined experiment name.</td>
<td></td>
</tr>
</tbody>
</table>
The following figure provides an example of the sample sheet format. Product documentation includes an electronic, read-only sample sheet template file (Sample Sheet Template.csv) that you can copy and use from www.illumina.com/documentation.

Figure 10 Sample Sheet Example
Tecan GenePaint

The Infinium LCG Quad Assay uses the GenePaint automated slide processor on the Tecan to process BeadChips. The GenePaint system employs a capillary gap flow-through chamber to enable reagent entrapment and exchange over the active surface of the BeadChip. Washing, blocking, extension, and signal amplification happen simply by adding reagents to the flow cell. Addition of a new reagent displaces the entrapped reagent from the flow cell. For maximum flexibility, these additions can be performed either manually or via the Tecan Genesis or Tecan Freedom Evo robots. The optional automated robotic processing and single-use reagent tube barcoding assure maximum consistency from slide to slide.

CAUTION
Do not run any other programs or applications while using the Tecan robot. Your computer and the robot can lock up and stop a run.
Imaging Systems

BeadChips are imaged using either the Illumina HiScan System or iScan System. Both of these systems are two-channel high-resolution laser imagers that scan BeadChips at 2 wavelengths simultaneously and create an image file for each channel (ie, 2 per array). The iScan Control Software determines intensity values for each bead type and creates data files for each channel. GenomeStudio uses this data file with the oligo pool manifest file (*.opa), individual bead pool map (*.bpm), or manifest file (*.bgx) to analyze the data from the assay.

Loading and unloading the iScan System can be automated with the optional AutoLoader2 or AutoLoader 2x for the HiScan System. All AutoLoaders support unattended processing by placing BeadChip carriers in the tray of the imaging system, so that it can scan the BeadChips. AutoLoader features include those items listed in the table.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>AutoLoader2 and AutoLoader2x Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature</td>
<td>AutoLoader2</td>
</tr>
<tr>
<td>Integrated with iScan Control Software</td>
<td>●</td>
</tr>
<tr>
<td>Integrated with Illumina LIMS</td>
<td>●</td>
</tr>
<tr>
<td>Email alert system</td>
<td>●</td>
</tr>
<tr>
<td>Single-reader or dual-reader configuration</td>
<td>●</td>
</tr>
<tr>
<td>Number of BeadChips supported per carrier</td>
<td>4</td>
</tr>
<tr>
<td>Number of carriers processed at a time</td>
<td>48</td>
</tr>
</tbody>
</table>
Illumina GenomeStudio is an integrated data analysis software platform that provides a common environment for analyzing data obtained from Illumina microarray and sequencing technologies. Within this common environment, or framework, the Illumina GenomeStudio software modules allow you to perform application-specific analyses. The Illumina GenomeStudio Genotyping Module, included with your Illumina Infinium Assay system, is an application for extracting genotyping data from intensity data files (*.idat files) collected from systems such as the Illumina HiScan System. For information on the latest software offerings, including software for applications such as cytogenetics, visit www.illumina.com.

Data analysis features of the GenomeStudio Genotyping Module include:

- Choice of assay analysis within a single application
- Data tables for information management and manipulation
- Plotting and graphing tools
- Whole-genome display of sample data in the IGV (Illumina Genome Viewer)
- Data visualization of one or more samples in the ICB (Illumina Chromosome Browser)
- Data normalization
- Custom report file formats
- Genotype calling
- Clustering
- Detection of LOH (loss of heterozygosity)
- Analysis of structural variation including CNV (copy number variation)

The GenomeStudio Genotyping Module can be fully integrated with the Illumina LIMS server.

For feature descriptions and instructions on using the GenomeStudio platform to visualize and analyze genotyping data, see the GenomeStudio Framework User Guide and the GenomeStudio User Guide or Online Help.
Manual Protocol

Introduction to Infinium LCG Quad Manual Protocol ... 18
Infinium LCG Quad Manual Workflow .. 19
Equipment, Materials, and Reagents .. 21
Quantify DNA (Optional) (Pre-Amp) ... 23
Make the AMP5 Plate .. 31
Incubate DNA (Post-Amp) .. 35
Fragment DNA (Post-Amp) ... 36
Precipitate DNA (Post-Amp) .. 39
Resuspend DNA (Post-Amp) .. 43
Hybridize to BeadChip (Post-Amp) ... 46
Wash BeadChips (Post-Amp) ... 61
Extend and Stain (XStain) BeadChip (Post-Amp) ... 73
Image BeadChip .. 93
Illumina GenomeStudio .. 94
Introduction to Infinium LCG Quad Manual Protocol

This chapter describes pre- and post-amplification manual laboratory protocols for the Infinium LCG Quad Assay. Follow the protocols in the order shown.
Infinium LCG Quad Manual Workflow

The following figure graphically represents the Infinium LCG Quad Assay manual workflow for the Infinium LCG Quad BeadChips. These protocols describe the procedure for preparing 16 DNA samples. To process 48 or 96 samples, scale up the protocols accordingly.
Figure 11 Infinium LCG Quad Assay Manual Workflow

Day 1

Make AMP5
- Hands-on: ~20 min/16 samples
- Reagents: 0.1N NaOH, RPM, AMM
- Output: AMP5 Plate

Incubate AMP5
- Incubation: 20-24 hours
- Output: AMP5 Plate with Amplified DNA

Day 2

Fragment AMP5
- Hands-on: ~30 min
- Incubation: 60 min
- Reagents: FRG
- Output: AMP5 Plate

Precip AMP5
- Hands-on: ~30 min/plate
- Incubation: 50 min
- Dry: 60 min
- Reagents: 2-propanol, PA1
- Output: AMP5 Plate

Resuspend AMP5
- Hands-on: ~30 min
- Incubation: 60 min
- Reagents: RA1
- Output: AMP5 Plate

Hyb Multi-Use
- Hands-on: ~40 min/12 beadchips
- Incubation: 16-24 hours
- Reagents: PB2
- Output: BeadChip

Day 3

Wash BeadChip
- Hands-on: ~20 min/4 beadchips
- Reagents: PB1
- Output: BeadChip

XStain LCG
- Hands-on: ~2 hours 45 min
- 8 beadchips
- Dry: 60 min
- Reagents: RA1
- 95% Formamide / 1 mM EDTA, PB1, LX1, LX2, XC3, XC4, EML, SML, ATM
- Output: BeadChip

Image BeadChip
- HiScanSQ System Scan Time: 60 min/BeadChip
- iScan System Scan Time: 150 min/BeadChip
- Output: Image and Data Files
Equipment, Materials, and Reagents

These materials are specific to the manual Infinium LCG Quad Assay. For a list of other equipment, materials, and reagents needed in an Infinium LCG Quad Assay lab, see the Infinium Lab Setup and Procedures Guide.

User-Supplied Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forceps</td>
<td>VWR; catalog # 25601-008; www.vwr.com</td>
</tr>
<tr>
<td>Autodesiccator cabinet (Optional—Allows scanning of BeadChips up to 3 days after processing)</td>
<td>VWR; catalog # 74950-342; www.vwr.com</td>
</tr>
</tbody>
</table>

Illumina-Supplied Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Sample BeadChip Alignment Fixture</td>
<td>Illumina; part # 218528</td>
</tr>
<tr>
<td>LCG glass back plates</td>
<td>Illumina; part # 15019708</td>
</tr>
<tr>
<td>LCG spacers (1 500-piece box supplied)</td>
<td>Illumina; part # 15021036</td>
</tr>
</tbody>
</table>

User-Supplied Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalog #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robots</td>
<td>Tecan</td>
</tr>
<tr>
<td>Tube vortexer</td>
<td>N/A</td>
</tr>
<tr>
<td>Tube rack</td>
<td>VWR; www.vwr.com</td>
</tr>
<tr>
<td>Combination optical tachometer/stroboscope</td>
<td>Cole-Parmer; catalog # A-87700-06; www.coleparmer.com</td>
</tr>
<tr>
<td>Microplate centrifuge with g-force range 280–3000 × g, for dedicated pre- and post-amp use</td>
<td>N/A</td>
</tr>
<tr>
<td>Adapter for centrifuge plates and tubes</td>
<td>N/A</td>
</tr>
<tr>
<td>Pipettes (2 separate sets)</td>
<td>2 each of P-20, P-200, and P-1000</td>
</tr>
<tr>
<td>8-channel precision pipettes (2 separate sets)</td>
<td>50 μl to 300 μl</td>
</tr>
<tr>
<td>Stop watch/timer</td>
<td>N/A</td>
</tr>
<tr>
<td>Forceps</td>
<td>VWR; catalog # 25601-008; www.vwr.com</td>
</tr>
<tr>
<td>Item</td>
<td>Catalog #</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Powder-free gloves (2 separate stocks)</td>
<td>N/A</td>
</tr>
<tr>
<td>Lab coats (separate pre-PCR and post-PCR)</td>
<td>N/A</td>
</tr>
<tr>
<td>Safety glasses (2 separate stocks)</td>
<td>N/A</td>
</tr>
<tr>
<td>15 ml conical tubes</td>
<td>N/A</td>
</tr>
<tr>
<td>96-well 0.2 ml skirted microplates</td>
<td>MJ Research; catalog # MSP-9601; www.mjr.com</td>
</tr>
<tr>
<td>0.8 ml storage plate (midi plate), conical bottom</td>
<td>Abgene; catalog # AB-0765; www.abgene.com</td>
</tr>
<tr>
<td>Heat Sealing foil sheets, Thermo-Seal</td>
<td>Abgene; catalog # AB-0559; www.abgene.com</td>
</tr>
<tr>
<td>96-well cap mats (pierceable, nonautoclavable)</td>
<td>Abgene; catalog # AB-0566; www.abgene.com</td>
</tr>
<tr>
<td>Absorbent pads</td>
<td>N/A</td>
</tr>
<tr>
<td>Kimwipes</td>
<td>N/A</td>
</tr>
<tr>
<td>Mild detergent, such as Alconox Powder</td>
<td>VWR; catalog # 21835-032; www.vwr.com</td>
</tr>
<tr>
<td>Detergent</td>
<td>N/A</td>
</tr>
<tr>
<td>Aerosol filter pipettes tips (2 separate stocks)</td>
<td>20 μl, 200 μl, 1000 μl</td>
</tr>
<tr>
<td>Disposable pipetting troughs</td>
<td>VWR; catalog # 21007-970; www.vwr.com</td>
</tr>
</tbody>
</table>

Illumina-Supplied Materials
- WG#-AMP5 barcode labels
- WG#-DNA barcode labels

Illumina-Supplied Reagents

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Anti-Stain Two-Color Master Mix</td>
</tr>
<tr>
<td>FRG</td>
<td>Fragmentation solution</td>
</tr>
<tr>
<td>RPM</td>
<td>Random Primer Mix</td>
</tr>
<tr>
<td>AMM</td>
<td>Amplification Master Mix</td>
</tr>
<tr>
<td>PB1</td>
<td>Reagent used to prepare BeadChips for hybridization</td>
</tr>
<tr>
<td>PB2</td>
<td>Humidifying buffer used during hybridization</td>
</tr>
<tr>
<td>PA1</td>
<td>Precipitation solution</td>
</tr>
<tr>
<td>RA1</td>
<td>Resuspension, hybridization, and wash solution</td>
</tr>
<tr>
<td>SML</td>
<td>Signal Mix Long</td>
</tr>
<tr>
<td>EML</td>
<td>Extension Mix Long</td>
</tr>
<tr>
<td>LX1</td>
<td>Long XStain 1</td>
</tr>
<tr>
<td>LX2</td>
<td>Long XStain 2</td>
</tr>
<tr>
<td>XC3</td>
<td>XStain BeadChip solution 3</td>
</tr>
<tr>
<td>XC4</td>
<td>XStain BeadChip solution 4</td>
</tr>
</tbody>
</table>
Quantify DNA (Optional) (Pre-Amp)

Illumina recommends the Molecular Probes PicoGreen assay to quantify dsDNA samples. The PicoGreen assay can quantify small DNA volumes and measures DNA directly. Other techniques can pick up contamination such as RNA and proteins. Illumina recommends using a spectrofluorometer because fluorometry provides DNA-specific quantification. Spectrophotometry might also measure RNA and yield values that are too high.

Estimated Time
Hands-on time: ~20 minutes per plate plus 10 minutes to prepare the PicoGreen Spectrofluorometer read time: ~5 minutes per plate

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoGreen dsDNA quantification reagent</td>
<td>See Instructions</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>1X TE</td>
<td>See Instructions</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Lambda DNA</td>
<td>See Instructions</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well 0.65 ml microplate</td>
<td>1 per 96 samples</td>
<td></td>
<td>General lab supplier</td>
</tr>
<tr>
<td>FLUOTRAC 200 96-well flat-bottom plate</td>
<td>1 per Standard DNA plate, 1 per Sample DNA plate</td>
<td></td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>
Preparation

- Thaw PicoGreen to room temperature for 60 minutes in a light-impermeable container.
- Hand-label the microplate "Standard DNA".
- Hand-label the FLUOTRAC plates "Standard QDNA" and "Sample QDNA". The Sample QDNA plate is for the quantified DNA.
- In the sample sheet, enter the Sample_Name (optional) and Sample_Plate for each Sample_Well.

Make a Standard DNA Plate

In this process, you create a Standard DNA plate with serial dilutions of stock Lambda DNA in the wells of column 1.

1. Add stock Lambda DNA to well A1 in the plate labeled "Standard DNA" and dilute it to 75 ng/μl in a final volume of 233.3 μl. Pipette up and down several times.
 a. Use the following formula to calculate the amount of stock Lambda DNA to add to A1:

 \[
 \frac{(233.3 \text{ μl}) \times (75 \text{ ng/μl})}{\text{stock Lambda DNA concentration}} = \text{μl of stock Lambda DNA to add to A1}
 \]

 b. Dilute the stock DNA in well A1 using the following formula:

 \[
 \text{μl of 1X TE to add to A1} = 233.3 \text{ μl} - \text{μl of stock Lambda DNA in well A1}
 \]

2. Add 66.7 μl 1X TE to well B1.

3. Add 100 μl 1X TE to wells C, D, E, F, G, and H of column 1.
4. Transfer 133.3 μl of Lambda DNA from well A1 into well B1. Pipette up and down several times.

5. Change tips. Transfer 100 μl from well B1 into well C1. Pipette up and down several times.

6. Repeat for wells D1, E1, F1, and G1, changing tips each time. **Do not transfer from well G1 to H1.** Well H1 serves as the blank 0 ng/μl Lambda DNA.

Table 3 Concentrations of Lambda DNA

<table>
<thead>
<tr>
<th>Row-Column</th>
<th>Concentration (ng/μl)</th>
<th>Final Volume in Well (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>B1</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>C1</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>D1</td>
<td>12.5</td>
<td>100</td>
</tr>
<tr>
<td>Row-Column</td>
<td>Concentration (ng/µl)</td>
<td>Final Volume in Well (µl)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>E1</td>
<td>6.25</td>
<td>100</td>
</tr>
<tr>
<td>F1</td>
<td>3.125</td>
<td>100</td>
</tr>
<tr>
<td>G1</td>
<td>1.5262</td>
<td>200</td>
</tr>
<tr>
<td>H1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 13 Serial Dilutions of Lambda DNA

7 Cover the Standard DNA plate with a cap mat.

Dilute PicoGreen

The diluted PicoGreen is added to both the Standard QDNA and Sample QDNA plates to make the DNA fluoresce when read with the spectrofluorometer.

CAUTION
Do not use glass containers for the PicoGreen reagent. PicoGreen degrades quickly in the presence of light and can adhere to glass, which lowers its effective concentration in solution and affects the upper response range accuracy.
1. Prepare a 1:200 dilution of PicoGreen into 1X TE using a sealed 100 ml or 250 ml Nalgene bottle wrapped in aluminum foil. Refer to the following table to identify the volumes to produce diluted reagent for multiple 96-well QDNA plates. For fewer than 96 DNA samples, scale down the volumes.

<table>
<thead>
<tr>
<th># QDNA Plates</th>
<th>PicoGreen Volume (µl)</th>
<th>1X TE Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>315</td>
<td>63</td>
</tr>
</tbody>
</table>

2. Cap the foil-wrapped bottle and vortex to mix.

Create QDNA Standard Plate with Diluted PicoGreen

In this process, you transfer the serial dilutions from the Standard DNA plate into the Standard QDNA FLUOTRAC plate and add diluted PicoGreen.

1. Pour the PicoGreen/1X TE dilution into a clean reagent reservoir.

2. Using a multichannel pipette, transfer 195 µl PicoGreen/1X TE dilution into each well of columns 1 and 2 of the FLUOTRAC plate labeled "Standard QDNA".

3. Add 2 µl of each stock Lambda DNA dilution from the Standard DNA plate to columns 1 and 2 of the Standard QDNA FLUOTRAC plate.
4 Immediately cover the plate with an adhesive aluminum seal.

Prepare QDNA Sample Plate with PicoGreen and DNA

In this process, you create a Sample QDNA plate that contains DNA sample and PicoGreen.

1. Using a multichannel pipette, transfer 195 μl PicoGreen/1xTE dilution into each well of the FLUOTRAC plate labeled "Sample QNT" for each well that will contain sample.

2. Add 2 μl of DNA sample to each well containing PicoGreen/1xTE.
3 Immediately cover the plate with an adhesive aluminum seal.

Read QDNA Plate

In this process, you use the Gemini XS or XPS spectrofluorometer to read the Standard QDNA and Sample QDNA plates. The spectrofluorometer creates a standard curve from the known concentrations in the Standard QDNA plate, which you use to determine the concentration of DNA in the Sample QDNA plates. For the best performance, Illumina recommends a minimum concentration of 50 ng/μl.

NOTE
Depending on the software version that you are running, the SoftMax Pro screens and menu options can vary.

1 Turn on the spectrofluorometer. At the PC, open the SoftMax Pro program.
2 Load the Illumina QDNA.ppr file from the installation CD that came with your system.
3 Select Protocols | GTS_QDNA.
4 Place the Standard QDNA FLUOTRAC Plate into the spectrofluorometer loading rack with well A1 in the upper left corner.
5 Click the blue arrow next to Illumina QDNA | SQDNA_STD.
6 Click Read.
7 When the software finishes reading the data, remove the plate from the drawer.
8 Click the blue arrow next to **Standard Curve** to view the standard curve graph.
9 If the standard curve is acceptable, continue with the sample plate. Otherwise, click **Standard Curve** again.
10 Place the first Sample QDNA plate in the spectrofluorometer with well A1 in the upper left corner.
11 Click the blue arrow next to **SQDNA** and click Read.
12 When the software finishes reading the plate, remove the plate from the drawer.
13 Repeat steps 10 through 12 to quantify all Sample QDNA plates.
14 After all plates have been read, click **File | Save** to save the output data file (*.pda).
15 When you have saved the *.pda file, click **File | Import/Export | Export** and export the file as a *.txt file. You can open the *.txt file in Microsoft Excel for data analysis.
16 Do either of the following:
 • Proceed to *Make the AMP5 Plate (Pre-Amp)*.
 • Store the quantified DNA at 2°C to 8°C for up to 1 month.

SAFE STOPPING POINT
Now is a good stopping point in the process.
Make the AMP5 Plate

This process creates an AMP5 plate for DNA amplification. The DNA sample is denatured with 0.1N NaOH and then neutralized with RPM. The last reagent added is AMM (Amplification Master Mix).

Figure 16 Denaturing and Neutralizing DNA

Estimated Time

Hands-on time:
- ~20 minutes per 16 samples

Incubation time: 20–24 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>AMM</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>0.1N NaOH</td>
<td>15 ml (per 8–24 samples)</td>
<td>2° to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>96-well 0.8 ml microplate (midi plate)</td>
<td>1 plate</td>
<td></td>
<td>User</td>
</tr>
<tr>
<td>DNA plate with DNA samples</td>
<td>1 plate</td>
<td>-25°C to -15°C</td>
<td>User</td>
</tr>
</tbody>
</table>

CAUTION

Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

Preparation

- In preparation for the Incubate AMP5 process, preheat the Illumina Hybridization Oven in the post-amp area to 37°C and allow the temperature to equilibrate.
- Prepare the Illumina Hybridization Oven as follows:
 a. Preheat the oven to 37°C:
 - Press the "F" button one time to change the display to TSET.
 - Press the "S" button to enter the set-temperature mode, and then use the Increment/Decrement dial to set the oven to 37°C.
 - Press the "S" button again to set 37°C as the temperature.
 b. Set the rocker speed to 5:
 - Press the "F" button twice until SPd is indicated on the display.
 - Press the "S" button to enter the rocker speed mode.
 - Use the Increment/Decrement dial to set the rocker speed to "5".
 - Press the "S" button again.
- Calibrate the Illumina Hybridization Oven with the Full-Scale Plus digital thermometer supplied with your system.
- Apply an AMP5 barcode label to a new midi plate.
- Thaw RPM and AMM tubes to room temperature.
- Thaw DNA samples to room temperature.
- In the sample sheet, enter the Sample_Name and Sample_Plate for each Sample_Well.
- On the lab tracking form, record:
 - Date/Time
 - Operator
 - DNA plate barcode
• AMP5 plate barcodes
• RPM tube barcodes
• AMM tube barcodes

NOTE
To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Steps to Make the AMP5 Plate

1. If you do not already have a DNA plate, add DNA, normalized to 50 ng/μl into either:
 • Midi plate: 40 μl to each DNA plate well
 • TCY plate: 30 μl to each DNA plate well
2. Apply a barcode label to the new DNA plate.
3. Vortex the DNA plate at 1600 rpm for 1 minute.
4. Pulse centrifuge at 280 × g.
5. Transfer 8 μl of the DNA sample into each well in the following AMP5 plate columns:
 • Column 1 (8 samples)
 • Columns 1 and 3 (16 samples)
 • Columns 1, 3, 5, 7, 9, and 11 (48 samples)
6. On the lab tracking form, record the original DNA sample ID for each well in the AMP5 plate.
7. Dispense 8 μl 0.1N NaOH into each well of the AMP5 plate that contains DNA.

Refer to the following figure throughout the Make AMP5 process.
Figure 17 Distributing Sample to Wells

NOTE
To ensure optimal performance, exchange tips between DNA samples and use aerosol filter tips when pipetting DNA.

8 Incubate for 10 minutes at room temperature.
9 Dispense 135 μl RPM into each well of the AMP5 plate containing sample.
10 Dispense 150 μl AMM into each well of the AMP5 plate containing sample.
11 Seal the AMP5 plate with the 96-well cap mat.
12 Invert the sealed plate at least 10 times to mix contents.
13 Pulse centrifuge at 280 × g.
14 Discard unused reagents in accordance with facility standards.
15 Proceed immediately to Incubate the AMP5 Plate.
Incubate DNA (Post-Amp)

This process incubates the AMP5 plate for 20–24 hours at 37°C in the Illumina Hybridization Oven. The process uniformly amplifies the genomic DNA, generating a sufficient quantity of each individual DNA sample to be used when in the Infinium LCG Quad Assay.

Estimated Time
Incubation time: 20–24 hours

Steps to Incubate the AMP5 Plate

OVERNIGHT INCUBATION
Incubate AMP5 plate in the Illumina Hybridization Oven for at least 20 hours but no more than 24 hours at 37°C.

1. Record the start and stop times on the lab tracking form.

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

2. Proceed to the next step, Fragment DNA (Post-Amp).
Fragment DNA (Post-Amp)

This process enzymatically fragments the amplified DNA samples. An endpoint fragmentation is used to prevent overfragmentation.

Figure 19 Fragmenting DNA

Estimated Time
Hands-on time: ~30 minutes for 96 samples
Incubation time: 1 hour

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRG</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>

Preparation
1. Preheat the heat block with the midi plate insert to 37°C.
2. Thaw FRG tubes to room temperature.
3. Gently invert the FRG tubes at least 10 times to mix contents.
4. Remove the AMP5 plate from the Illumina Hybridization Oven.
5. On the lab tracking form, record:
 - Date/Time
 - Operator
Steps to Fragment the AMP5 Plate

1. Pulse centrifuge the plate at 280 × g.

2. Split the sample into 1 additional well, for a total of 2 wells per sample. Each well should contain 150 μl.
 For example, move 150 μl sample from A1 into A2, A3, and A4.
 Follow this pattern for rows B–H, columns 1, 3, 5, 7, 9, and 11.

3. Add 50 μl FRG to each well containing sample.

4. Seal the AMP5 plate with the 96-well cap mat.
CAUTION
Orient the cap mat so that A1 on the cap matches A1 on the plate. To prevent evaporation and spills, which could lead to assay variability and cross-contamination, make sure that all 96 caps are securely seated.

5 Vortex the plate at 1600 rpm for 1 minute.
6 Pulse centrifuge the plate at 280 × g.
7 Place the sealed plate on the 37°C heat block for 1 hour.
8 Record the start and stop times on the lab tracking form.
9 Discard unused reagents in accordance with facility standards.
10 Do either of the following:
 • Continue to the next step, Precipitate the AMP5 Plate (Post-Amp). Leave plate in 37°C heat block until setup is complete. Do not leave the plate in the 37°C heat block for longer than 2 hours.
 • If you do not plan to proceed to the next step within the next 4 hours, store the sealed AMP5 plate at -25°C to -15°C for no more than 24 hours.

SAFE STOPPING POINT
Now is a good stopping point in the process.
Precipitate DNA (Post-Amp)

Add PA1 and 2-propanol to the AMP5 plate to precipitate the DNA samples.

Figure 21 Precipitating DNA

Estimated Time
Hands-on time: ~30 minutes
Incubation and dry time: 2 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1</td>
<td>1 tube (per 16 samples)</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>100% 2-propanol</td>
<td>12 ml (per 16 samples)</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

CAUTION
Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

Preparation

1. Do either of the following:
 - If you froze the AMP5 plate after fragmentation, thaw it to room temperature, then pulse centrifuge the plate to 280 × g.
• If you proceeded immediately from Fragment the AMP5 Plate, leave the plate in the 37°C heat block until setup is complete.

2 Preheat heat block to 37°C.

3 Thaw PA1 to room temperature. Gently invert at least 10 times to mix contents.

4 Remove the 96-well cap mat.

 On the lab tracking form, record:
 • Date/Time
 • Operator
 • PA1 tube barcodes
 • 2-propanol lot number and date opened

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Steps to Precipitate the AMP5 Plate

1 Add 100 μl PA1 to each AMP5 plate well containing sample.

2 Seal the plate with the cap mat.

3 Vortex the plate at 1600 rpm for 1 minute.

4 Incubate at 37°C for 5 minutes.

5 Pulse centrifuge at 280 × g for 1 minute.

 NOTE
 Set the centrifuge to 4°C in preparation for the next centrifuge step.

6 Carefully remove the cap mat and discard it.

7 Add 300 μl 100% 2-propanol to each well containing sample.

8 Carefully seal the AMP5 plate with a new, dry cap mat, taking care not to shake the plate in any way until the cap mat is fully seated.

9 Invert the plate at least 10 times to mix contents thoroughly.

10 Incubate at 4°C for 30 minutes.
11 Place the sealed AMP5 plate in the centrifuge opposite another plate of equal weight.

Figure 22 Sealed AMP5 Plate and Plate of Equal Balance in Centrifuge

12 Centrifuge at 3000 \(\times \) g at 4°C for 20 minutes. Immediately remove the AMP5 plate from centrifuge.

CAUTION
Perform the next step immediately to avoid dislodging the blue pellet. If any delay occurs, repeat the 20 minute centrifugation before proceeding.

13 Remove the cap mat and discard it.

14 Quickly invert the AMP5 plate and drain the liquid onto an absorbent pad to decant the supernatant. Then smack the plate down on a dry area of the pad, avoiding the liquid that was drained onto the pad.

15 Tap firmly several times for 1 minute or until all wells are devoid of liquid.

CAUTION
Keep plate inverted. To ensure optimal performance, do not allow supernatant in wells to pour into other wells.
16 Leave the uncovered, inverted plate on the tube rack for 1 hour at room temperature to air dry the pellet. You can expect to see blue pellets at the bottoms of the wells.

Figure 23 Uncovered AMP5 Plate Inverted for Air Drying

CAUTION
Do not overdry the pellet. Pellets that are overdried are difficult to resuspend. Poorly resuspended samples lead to poor data quality.

17 Enter the start and stop times on the lab tracking form.

18 Discard unused reagents in accordance with facility standards.

19 Do either of the following:
 • Continue to the next step, *Resuspend DNA (Post-Amp).*
 • If you do not plan to proceed to the next step immediately, seal the AMP5 plate with a new cap mat and store it at -25°C to -15°C.

SAFE STOPPING POINT
Now is a good stopping point in the process.
Resuspend DNA (Post-Amp)

Add RA1 to the AMP5 plate to resuspend the precipitated DNA samples.

Figure 24 Resuspending DNA

Estimated Time
Hands-on time: ~30 minutes
Incubation time: 1 hour

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA1</td>
<td>9 ml per 48 samples</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>

NOTE
Pour out only the recommended volume of RA1 needed for the suggested number of samples listed in the consumables table. Additional RA1 is used later in the XStain BeadChip step.

WARNING
This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.
Preparation

1. If you stored the AMP5 plate at -25°C to -15°C, thaw it to room temperature. Remove the cap mat and discard it.

2. Preheat the Illumina Hybridization Oven to 48°C.

3. Turn on the heat sealer to preheat. Allow 20 minutes.

4. RA1 is shipped frozen. Gradually warm the reagent to room temperature, preferably in a 20°C to 25°C water bath. Gently mix to dissolve any crystals that can be present.

5. On the lab tracking form, record:
 - Date/Time
 - Operator
 - RA1 bottle barcodes

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Use Fresh RA1 Reagent for Each Step

It is important to use fresh RA1 for each protocol step in the assay where it is required. RA1 that has been stored properly and has not been dispensed for use in either the XStain or Resuspension step is considered fresh RA1. After RA1 has been poured out into a reservoir and exposed to room temperature air for extended periods of time, it is no longer fresh.

To make best use of RA1, only pour out the amount needed for the current step. If you plan to perform additional assay steps requiring RA1 that same day, then leave the remaining thawed reagent in the original, closed bottle at room temperature until it is needed. Otherwise, follow the standard RA1 storage procedures described in this assay guide for next-day processing and prolonged storage conditions.

Steps to Resuspend the AMP5 Plate

1. Add 46 μl RA1 to each well of the AMP5 plate containing a DNA pellet. Reserve any leftover reagent for the Hybridization and XStain steps.
2. Apply a foil heat seal to the AMP5 plate by firmly and evenly holding the heat sealer sealing block down for 3 seconds.

3. Immediately remove the AMP5 plate from the heat sealer and forcefully roll the rubber plate sealer over the plate until you can see all 96 well indentations through the foil. Repeat application of the heat sealer if all 96 wells are not defined.

4. Place the sealed plate in the Illumina Hybridization Oven and incubate for 1 hour at 48°C.

5. Vortex the plate at 1800 rpm for 1 minute.

6. Pulse centrifuge to 280 × g.

 NOTE
 If you store the pellets at -25°C to -15°C for extended periods of time after the precipitate process, you might need to repeat the vortexing and centrifugation in the previous steps until the pellets are resuspended.

7. Discard unused reagents in accordance with facility standards.

8. Do either of the following:
 - Continue to the next step, *Hybridize to BeadChip (Post-Amp)*. If you plan to do so immediately, it is safe to leave the AMP5 plate at room temperature for up to 1 hour.
 - If you do not plan to proceed to the next step immediately, store the sealed AMP5 plate at -25°C to -15°C for no more than 24 hours. Store RA1 at -25°C to -15°C.

 SAFE STOPPING POINT
 Now is a good stopping point in the process.
Hybridize to BeadChip (Post-Amp)

In this process, you dispense the fragmented and resuspended DNA samples onto BeadChips. Place the DNA-loaded BeadChips into the Hyb Chamber inserts, and then place the inserts into the Hyb Chambers. Incubate the Hyb Chambers in the Illumina Hybridization Oven for 16–24 hours at 48°C.

Figure 25 Hybridize to BeadChip

![Diagram of Hybridize to BeadChip](image)

Estimated Time

Hands-on time:
- 4x1 LCG BeadChip: ~40 minutes for 12 BeadChips (48 samples)

Incubation time: 16–24 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB2</td>
<td>2 tubes (per 16 samples)</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>BeadChips</td>
<td>4 (per 16 samples)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Hyb Chambers</td>
<td>1 (per 16 samples)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Hyb Chamber gaskets</td>
<td>1 (per 16 samples)</td>
<td></td>
<td>Illumina</td>
</tr>
</tbody>
</table>
CAUTION
Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

Preparation
1. If frozen, thaw AMP5 plate to room temperature, and then pulse centrifuge the AMP5 plate to 280 × g.
2. Preheat the heat block to 95°C.
3. Prepare the Illumina Hybridization Oven as follows:
 a. Preheat the oven to 48°C:
 — Press the "F" button one time to change the display to TSET.
 — Press the "S" button to enter the set-temperature mode, and then use the Increment/Decrement dial to set the oven to 48°C.
 — Press the "S" button again to set 48°C as the temperature.
 b. Set the rocker speed to 5:
 — Press the "F" button twice until SPd is indicated on the display.
 — Press the "S" button to enter the rocker speed mode.
 — Use the Increment/Decrement dial to set the rocker speed to "5".
 — Press the "S" button again.
4. Calibrate the Illumina Hybridization Oven with the Full-Scale Plus digital thermometer supplied with your system.
5. On the lab tracking form, record:
 • Date/Time
 • Operator
 • PB2 tube lot number
Assemble the Hybridization Chambers

1. Place the resuspended AMP5 plate on the heat block to denature the samples at 95°C for 20 minutes.

2. Remove the BeadChips from 2°C to 8°C storage, leaving the BeadChips in their plastic bags and mylar packages until you are ready to begin hybridization.

3. During the 20-minute incubation, prepare the Hyb Chambers.
 Place the following items on the benchtop for use in this procedure:
NOTE
To ensure optimal results from Hyb Chambers, keep the Hyb Chamber lids and bases together. Adopt a labeling convention that keeps each Hyb Chamber base paired with its original lid. Check Hyb Chamber lid-base pairs regularly to make sure that the fit remains secure. Check hinges regularly for any signs of abnormal wear or loose fittings. It is important that the hinges provide adequate clamping strength to ensure an airtight seal between the lid and the base. Record the Hyb Chamber that was used for each BeadChip, so that Hyb Chambers can be investigated and evaluated in the event of sample evaporation or other lab processing anomalies.
a Place the BeadChip Hyb Chamber gaskets into the BeadChip Hyb Chambers.
 — Match the wider edge of the Hyb Chamber gasket to the barcode-ridge side of the Hyb Chamber.

Figure 27 Hyb Chamber and Gasket

A Reservoirs
B Barcode Ridges
C Narrower Edges
D Wider Edges

— Lay the gasket into the Hyb Chamber, and then press it down all around.

Figure 28 Placing Gasket into Hyb Chamber

— Make sure that the Hyb Chamber gaskets are properly seated.
b Dispense 400 μl PB2 into the humidifying buffer reservoirs in the Hyb Chambers.
WARNING
Do not replace PB2 in the Hyb Chamber with RA1. RA1 decreases the
criongcy and can negatively affect sample call rates and logRdev. PB2 is
formulated to produce the appropriate amount of humidity within the Hyb
Chamber environment to prevent sample from evaporating during
hybridization.

c After you fill the Hyb Chamber reservoirs with PB2, place the lid on the Hyb
Chamber right away to prevent evaporation. It is not necessary to lock the lid.
d Leave the closed Hyb Chambers on the bench at room temperature until the
BeadChips are loaded with DNA sample. Load BeadChips into the Hyb Chamber
within 1 hour.

NOTE
You can also prepare the Hyb Chambers later, during the 30-minute cool down.
4 After the 20-minute incubation, remove the AMP5 plate from the heat block and place it on the benchtop at room temperature for 30 minutes.

5 After the 30-minute cool down, pulse centrifuge the AMP5 plate at 280 × g. Remove the foil seal.

6 Combine the 2 separate wells back into the original well. For example, move 46 μl sample from the A2 well back into A1.

Figure 31 Consolidating Sample Back Into Original Sample Well

Load BeadChip

1 Just before loading DNA samples, remove all BeadChips from their plastic bags and mylar packages.

 CAUTION

 Hold the BeadChip by the ends with your thumb and forefinger (thumb at the barcode end). Do not hold the BeadChip by the sides near the sample inlets. Avoid contacting the beadstripe area and sample inlets.

2 Place each BeadChip in a Hyb Chamber insert, orienting the barcode end so that it matches the barcode symbol on the Hyb Chamber insert.
3 Using a single-channel precision pipette, dispense 70 μl of each DNA sample onto the appropriate BeadChip section.

Follow the color-coded sections shown in the chart on the following page for sample loading assistance.

a Load sample A1 from the AMP5 plate into sample inlet A1 of BC2#1. Make sure that the pipette tip is in the sample inlet before dispensing.

b Load sample B1 from the AMP5 plate into sample inlet B1 of BC2#1.

c Continue in this manner until all samples are loaded.
4 On the lab tracking form, record the BeadChip barcode for each group of samples.

5 In the sample sheet Sentrix ID column, record the BeadChip sample ID and position. See the Sample Section Naming Diagram in the lab tracking form.

6 After loading all DNA onto the BeadChip, wait for the sample to disperse over the entire surface.

7 Inspect the loading port to see if a large bolus of liquid remains.
Excess sample volume in the BeadChip loading port helps prevent low-intensity areas resulting from evaporation.

Figure 35 Bolus of Liquid at Loading Port

If no excess liquid is visible, it is acceptable to add additional sample from the leftover volume in the amplification plate until there is a large bolus around the loading port.

NOTE
Do not add extra RA1, because too much RA1 dilutes the sample.

8 Record any top-up activity on the lab tracking form.

9 Heat-seal any residual sample in the AMP5 plate with foil, and store at -25°C to -15°C. Store at -80°C if you do not plan to use the sample again within 24 hours.

Set up BeadChip for Hybridization

CAUTION
For optimal performance, take care to keep the Hyb Chamber inserts containing BeadChips steady and level when lifting or moving. Avoid shaking and always keep parallel to the lab bench. Do not hold by the sides near the sample inlets.
1. Load the Hyb Chamber inserts containing BeadChips into the Illumina Hyb Chamber. Position the barcode end over the ridges indicated on the Hyb Chamber.

WARNING
Keep Hyb Chambers at room temperature when you load the BeadChips. Do not place the Hyb Chambers in the Illumina Hybridization Oven before loading the BeadChips. If you heat the PB2 and then open the Hyb Chamber to add BeadChips, some of the PB2 evaporates, leading to a change in the osmolality of PB2 and an imbalance in the vapor pressure between PB2 and RA1.

![Figure 36 Placing Hyb Chamber Inserts into the Hyb Chamber](image)

2. Place the back side of lid onto the Hyb Chamber and then slowly bring down the front end to avoid dislodging the Hyb Chamber inserts.

![Figure 37 Seating Lid onto Hyb Chamber](image)

3. Close the clamps on both sides of the Hyb Chamber so that the lid is secure and even on the base (no gaps). It is best to close the clamps in a kitty-corner fashion, closing first the top left clamp, then the bottom right, then the top right followed by the bottom left.
NOTE

Keep the Hyb Chamber steady and level when moving it or transferring it to the Illumina Hybridization Oven.

4. Place the Hyb Chamber in the 48°C Illumina Hybridization Oven with the clamps on the left and right sides of the oven and the Illumina logo facing you.

CAUTION

After loading the BeadChips into the Hyb Chambers, place the Hyb Chambers into the Illumina Hybridization Oven immediately. Do not modify the hybridization environment by adding additional fixtures or humidifying elements. Leave the Hyb Chambers in the oven at the correct orientation and temperature until hybridization is complete. Changes to the hybridization environment can have unexpected effects on data quality.

Figure 38 Hyb Chamber Correctly Placed in Hyb Oven

NOTE

If you are stacking multiple Hyb Chambers in the Illumina Hybridization Oven, fit the feet of the top Hyb Chamber into the matching indents on the lid of the Hyb Chamber below it. The fitted feet and lid hold the Hyb Chambers in place while they are rocking. You can stack up to 3 Hyb Chambers per row for a maximum of 6 Hyb Chambers total in the Illumina Hybridization Oven.
5 [Optional] Start the rocker, setting the speed to 5.
OVERNIGHT INCUBATION
Incubate at 48°C for at least 16 hours but no more than 24 hours.

6 Enter the start and stop times on the lab tracking form.

7 Place RA1 into the freezer at -25°C to -15°C for use the next day.

8 Proceed to Wash BeadChips (Post-Amp) after the overnight incubation.

Resuspend XC4 Reagent for XStain BeadChip

Keep the XC4 in the bottle in which it was shipped until you are ready to use it. In preparation for the XStain protocol, follow these steps to resuspend the XC4 reagent.

1 Add 330 ml 100% EtOH to the XC4 bottle, for a final volume of 350 ml. Each XC4 bottle has enough solution to process up to 24 BeadChips.

2 Shake the XC4 bottle vigorously to ensure complete resuspension. After it is resuspended, use XC4 at room temperature. You can store it at 2° to 8°C for 2 weeks if unused.
Wash BeadChips (Post-Amp)

In this procedure, the BeadChips are prepared for the XStain process. Remove the cover seals from the BeadChips and wash the BeadChips in 2 separate PB1 reagent washes. Then, assemble the BeadChips into flow-through chambers under the PB1 buffer.

Figure 41 Washing BeadChip

Estimated Time
- 20 minutes for 4 BeadChips
- 30 minutes for 8 BeadChips
Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB1</td>
<td>550 ml for 1 to 8 BeadChips 700 ml for 9 to 16 BeadChips 850 ml for 17 to 24 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>Multisample BeadChip alignment fixture</td>
<td>1 (per 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Te-Flow LCG flow-through chambers, with black frames, LCG spacers, LCG glass back plates, and clamps</td>
<td>1 (per BeadChip)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Wash dish</td>
<td>2 (up to 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Wash rack</td>
<td>1 (up to 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
</tbody>
</table>

CAUTION
Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

WARNING
This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.
Preparation

1 Remove each Hyb Chamber from the Illumina Hybridization Oven. Let cool on the benchtop for 30 minutes before opening.

2 Have ready on the lab bench:
 a Two wash dishes:
 — Containing 200 ml PB1, and labeled as such
 b Multi-Sample BeadChip Alignment Fixture
 — Using a graduated cylinder, fill with 150 ml PB1
 c Te-Flow LCG flow-through chamber components:
 — Black frames
 — LCG spacers (separated for ease of handling)
 — Clean LCG glass back plates as directed in the Infinium Lab Setup and Procedures Guide.
 — Clamps

3 On the lab tracking form, record:
 • Date/Time
 • Operator
 • PB1 bottle barcode

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Steps to Wash BeadChips

1 Attach the wire handle to the rack and submerge the wash rack in the wash dish containing 200 ml PB1.
Figure 42 Wash Rack in Wash Dish Containing PB1

2 Remove the Hyb Chamber inserts from the Hyb Chambers.

3 Remove each BeadChip from the Hyb Chamber insert.

4 Remove the cover seal from each BeadChip.

- Using powder-free gloved hands, hold the BeadChip securely and by the edges in one hand. Avoid contact with the sample inlets. Make sure that the barcode is facing up and closest to you, and that the top side of the BeadChip is angled slightly away from you.

- Remove the entire seal in a single, continuous motion. Start with a corner on the barcode end and pull with a continuous upward motion away from you and towards the opposite corner on the top side of the BeadChip.
c Discard the cover seal.

CAUTION
Do not touch the arrays!

5 Immediately and carefully slide each BeadChip into the wash rack, making sure that the BeadChip is submerged in the PB1.

Figure 44 Submerging BeadChips in Wash Dish Containing PB1

6 Repeat steps 4 through 5 until all BeadChips (a maximum of 8) are transferred to the submerged wash rack.
7 After all BeadChips are in the wash rack, move the wash rack up and down for 1 minute, breaking the surface of the PB1 with gentle, slow agitation.

8 Move the wash rack to the other wash dish containing clean PB1. Make sure the BeadChips are submerged.

9 Move the wash rack up and down for 1 minute, breaking the surface of the PB1 with gentle, slow agitation.

10 When you remove the BeadChips from the wash rack, inspect them for remaining residue.

 NOTE
 Residue that can adversely affect results is sometimes left on BeadChips after seals are removed. If there is residue left on the BeadChips after the second PB1 wash, use a 200 μl pipette tip for each BeadChip and slowly and carefully scrape off the residues outward (away) from the bead-sections under PB1. Use a new pipette tip for each BeadChip. Then, continue with the protocol.

11 For each additional set of 8 BeadChips:
 a Assemble the flow-through chambers for the first 8 BeadChips, as described in *Assemble Flow-Through Chambers* on page 67.
 b Repeat the wash steps in this section to wash the next set of 8 BeadChips.
Assemble Flow-Through Chambers

1. If you have not done so, fill the BeadChip alignment fixture with 150 ml PB1. If you plan to process more than 4 BeadChips, this 150 ml of PB1 can be reused for an additional set of 4 BeadChips. Use 150 ml of fresh PB1 for every additional set of 8 BeadChips.

2. For each BeadChip to be processed, place a black frame into the BeadChip alignment fixture prefilled with PB1.

NOTE
Confirm that you are using the correct Infinium LCG glass back plates and spacers before assembling the flow-through chambers. Refer to the following image for the correct flow-through chamber components.

Figure 45 Correct LCG Back Plates and Spacers

[Diagram showing correct and incorrect LCG back plates and spacers]
3 Place each BeadChip to be processed into a black frame, aligning its barcode with the ridges stamped onto the alignment fixture.

NOTE
Inspect the surface of each BeadChip for residue left by the seal. Use a pipette tip to remove any residue under buffer and be careful not to scratch the bead area.
4 Place a clear LCG spacer onto the top of each BeadChip. Use the alignment fixture grooves to guide the spacers into proper position.

NOTE
Be sure to use the clear plastic spacers, not the white ones.

Figure 48 Placing Clear Plastic Spacer onto BeadChip

5 Place the alignment bar onto the alignment fixture. The groove in the alignment bar fits over the tab on the alignment fixture.
6. Place a clean LCG glass back plate on top of the clear spacer covering each BeadChip. The plate reservoir is at the barcode end of the BeadChip, facing inward to create a reservoir against the BeadChip surface.
Attach the metal clamps to the flow-through chambers as follows:

a. Gently push the glass back plate against the alignment bar with one finger.

b. Place the first metal clamp around the flow-through chamber so that the clamp is approximately 5 mm from the top edge.

c. Place the second metal clamp around the flow-through chamber at the barcode end, approximately 5 mm from the reagent reservoir.

Figure 51 Securing Flow-Through Chamber Assembly with Metal Clamps

8. Using scissors, trim the ends of the clear plastic spacers from the flow-through chamber assembly. Slip scissors up over the barcode to trim the other end.
9 Immediately wash the Hyb Chamber reservoirs with DiH₂O and scrub them with a small cleaning brush, ensuring that no PB2 remains in the Hyb Chamber reservoir.

- **CAUTION**
 It is important to wash the Hyb Chamber reservoirs immediately and thoroughly to make sure that no traces of PB2 remain in the wells.

10 Discard unused reagents in accordance with facility standards.

11 Proceed to the next step, *Extend and Stain (XStain) BeadChip (Post-Amp).*

- **CAUTION**
 Place all assembled flow-through chambers on the lab bench in a horizontal position while you perform the preparation steps for XStain BeadChip. Do not place the flow-through chambers in the chamber rack until all necessary steps are completed.
In this process, you use RA1 reagent to wash away unhybridized and nonspecifically hybridized DNA sample. LX1 and LX2 are added to condition the BeadChip surface for the extension reaction. Dispense EML reagent into the flow-through chambers to extend the primers hybridized to DNA on the BeadChip. This reaction incorporates labeled nucleotides into the extended primers. 95% formamide/1 mM EDTA is added to remove the hybridized DNA. After neutralization using the XC3 reagent, the labeled extended primers undergo a multilayer staining process on the chamber rack. Next, you disassemble the flow-through chambers and wash the BeadChips in the PB1 reagent, coat them with XC4, and then dry them.

Estimated Time

Hands-on time: ~2 hours and 45 minutes for 8 BeadChips
Dry time: 55 minutes

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA1</td>
<td>10 ml for 1–8 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 ml for 9–16 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 ml for 17–24 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>LX1</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>LX2</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>EML</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>XC3</td>
<td>50 ml for 1–8 BeadChips 100 ml for 9–16 BeadChips 150 ml for 17–24 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>SML (Make sure that all SML tubes indicate the same stain temperature on the label)</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>ATM</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>PB1</td>
<td>310 ml for 1–8 BeadChips 285 ml for 9–24 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>XC4</td>
<td>310 ml for 1–8 BeadChips 285 ml for 9–24 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>Alconox Powder Detergent</td>
<td>As needed</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>EtOH</td>
<td>As needed</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>95% formamide/1 mM EDTA</td>
<td>15 ml for 1–8 BeadChips</td>
<td>-25°C to -15°C</td>
<td>General lab supplier</td>
</tr>
<tr>
<td></td>
<td>17 ml for 9–16 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 ml for 17–24 BeadChips</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION
Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

NOTE
It is important to use fresh RA1 for each protocol step in the assay where it is required. RA1 that has been stored properly and has not been dispensed for use in either the XStain or Resuspension step is considered fresh RA1. After RA1 has been poured out into a reservoir and exposed to room temperature air for extended periods of time, it is no longer fresh.

WARNING
This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.

Preparation

1. RA1 is shipped and stored at -25°C to -15°C. Gradually warm the reagent to room temperature, preferably in a 20°C to 25°C water bath. Gently mix to dissolve any crystals that can present.

2. Place all reagent tubes in a rack in the order you plan to use them. If frozen, allow them to thaw to room temperature, and then gently invert the reagent tubes at least 10 times to mix contents.
3. Dispense all bottled reagents into disposable reservoirs, as they are needed.

4. On the lab tracking form, record:
 - Date/Time
 - Operator
 - RA1 barcode
 - XC3 barcode
 - LX1 barcodes
 - LX2 barcodes
 - EML barcodes
• SML barcodes
• ATM barcodes
• PB1 barcode
• XC4 barcodes

NOTE
To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Set Up Chamber Rack

1. Make sure that the water circulator reservoir is filled with water to the appropriate level. See the *VWR Operator Manual*, VWR part # 110-229.

2. Turn on the water circulator and set it to a temperature that brings the chamber rack to 44°C at equilibrium.
 This temperature can vary depending on facility ambient conditions.
3 Confirm the temperature using the temperature probe for the chamber rack. The temperature displayed on the water circulator LCD screen might differ from the actual temperature on the chamber rack.

4 Make sure that you remove bubbles trapped in the chamber rack each time you run this process. Follow instructions in the Te-Flow (Tecan Flow-Through Module) Operating Manual, Tecan Doc ID 391584.

5 Use the Illumina Temperature Probe in several locations to make sure that the chamber rack is at 44°C. Make sure that all locations are at 44°C ± 0.5°C.
NOTE
Do not leave the temperature probe in the first 3 rows of the chamber rack. Reserve this space for BeadChips.

Figure 56 Illumina Temperature Probe and Temperature Probe in Chamber Rack

6 For accurate temperature measurement, make sure that the Illumina Temperature Probe is touching the base of the chamber rack.

Single-Base Extension

CAUTION
The remaining steps must be performed without interruption.

NOTE
If you are processing more than 8 BeadChips, complete the reagent dispensing step for each reagent for the first set of 8 BeadChips. Then continue the same reagent dispensing steps for the second set of 8 BeadChips. Finally, move to the last set of 8 BeadChips before you start the incubation time.

Steps marked with an asterisk (*) indicate when to follow this reagent dispensing method.

1 When the chamber rack reaches 44°C, quickly place each flow-through chamber assembly into the chamber rack.
For 4 BeadChips, place the flow-through chambers in every other position, starting at 1, in the first row of the chamber rack. For larger numbers of BeadChips, fill all positions in the first row, then the second and third.
2 Make sure that each flow-through chamber is properly seated on its rack to allow adequate heat exchange between the rack and the chamber.

3 On the lab tracking form, record the chamber rack position for each BeadChip.

4 Shake the XC4 bottle vigorously to ensure complete resuspension. If necessary, vortex until dissolved.

 CAUTION
 Do not allow pipette tips to contact BeadChip surface. Touch off in the reservoir of the glass back plate.

5 Into the reservoir of each flow-through chamber, dispense:
 a 150 μl RA1. Incubate for 30 seconds. Repeat 5 times.

 CAUTION
 Pipette tip must not contact BeadChip surface.

 b 225 μl LX1. Repeat one time*. Incubate for 10 minutes.
 c 225 μl LX2. Repeat one time*. Incubate for 10 minutes.
 d 300 μl EML. Incubate for 15 minutes.
e 250 μl 95% formamide/1 mM EDTA. Incubate for 1 minute. Repeat twice.
f Incubate 5 minutes.
g Begin ramping the chamber rack temperature to the temperature indicated on the SML tube.
h 250 μl XC3. Incubate for 1 minute. Repeat twice*.

6 Wait until the chamber rack reaches the correct temperature.

Stain BeadChip

NOTE
If you are processing more than 8 BeadChips, complete the reagent dispensing step for each reagent for the first set of 8 BeadChips. Then continue the same reagent dispensing steps for the second set of 8 BeadChips. Finally, move to the last set of 8 BeadChips before you start the incubation time.

Steps marked with an asterisk (*) indicate when to follow this reagent dispensing method.

1 If you plan to image the BeadChip immediately after the staining process, turn on the scanner now to allow the lasers to stabilize.

2 Into the reservoir of each flow-through chamber, dispense:
 a 250 μl SML. Incubate for 10 minutes.
 b 250 μl XC3. Incubate for 1 minute. Repeat twice*. Wait 5 minutes.
 c 250 μl ATM. Incubate for 10 minutes.
 d 250 μl XC3. Incubate for 1 minute. Repeat twice*. Wait 5 minutes.
 e 250 μl SML. Incubate for 10 minutes.
 f 250 μl XC3. Incubate for 1 minute. Repeat twice*. Wait 5 minutes.
 g 250 μl ATM. Incubate for 10 minutes.
 h 250 μl XC3. Incubate for 1 minute. Repeat twice*. Wait 5 minutes.
 i 250 μl SML. Incubate for 10 minutes.
 j 250 μl XC3. Incubate for 1 minute. Repeat twice*. Wait 5 minutes.

3 Immediately remove the flow-through chambers from the chamber rack and place horizontally on a lab bench at room temperature.

Wash and Coat 8 BeadChips

Before starting the Wash and Coat process, read these important notes:
Take the utmost care to minimize the chance of lint or dust entering the wash dishes, which could transfer to the BeadChips. Place wash dish covers on wash dishes when stored or not in use. Clean wash dishes with low-pressure air to remove particulates before use.

In preparation for XC4 BeadChip coating, wash the tube racks and wash dishes thoroughly before and after use. Rinse with DI water. Immediately following wash, place racks and wash dishes upside down on a wash rack to dry.

Place Kimwipes in 3 layers on the lab bench. Place a tube rack on top of these Kimwipe layers. Do not place on absorbent lab pads. You will place the staining rack containing BeadChips on this tube rack after removing it from the XC4 wash dish.

Prepare an additional clean tube rack that fits the internal dimensions of vacuum desiccator for removal of the BeadChips. Allow one rack per 8 BeadChips. No Kimwipes are required under this tube rack.

Equipment Needed

Place the following items on the bench:

- 1 staining rack
- 1 vacuum desiccator
- 1 tube rack
- Self-locking tweezers
- Large Kimwipes
- Vacuum hose

Steps

1. Set up 2 top-loading wash dishes, labeled "PB1" and "XC4".

2. To indicate the fill volume before filling wash dishes with PB1 and XC4, pour 310 ml water into the wash dishes and mark the water level on the side. Empty the water from the wash dish. Marking the level enables you to pour reagent directly from the PB1 and XC4 bottles into the wash dishes, minimizing contaminant transfer from labware to wash dishes.
3 Pour 310 ml PB1 into the wash dish labeled “PB1.”

4 Submerge the unloaded staining rack into the wash dish with the locking arms and tab facing towards you. This orientation makes it easier and safer to remove the BeadChips. Let the staining rack sit in the wash dish. You will use it to carry the BeadChips after disassembling the flow-through chambers.
Figure 59 Staining Rack Locking Arms and Tab

A Locking Arms
B Tab

CAUTION
If the staining rack handle is not correctly oriented, the BeadChips can be damaged when you remove the staining rack handle before removing the BeadChips.

5 One at a time, disassemble each flow-through chamber:
 a Use the dismantling tool to remove the 2 metal clamps.

CAUTION
It is important to use the dismantling tool to avoid chipping the glass back plates.
Figure 60 Removing the Metal Clamps from Flow-Through Chamber

b Remove the glass back plate.
c Set the glass back plate aside. When you finish the XStain LCG BeadChip protocol, clean the glass back plates as described in the Infinium Lab Setup and Procedures Guide.
d Remove the spacer. To avoid damaging the stripes on the BeadChip, pull the spacer out so that the long sides slide along the sides of the BeadChip.
e Remove the BeadChip.

CAUTION
Do not touch the face of the BeadChips. Handle them by the barcode end or by the edges.

6 Place the BeadChips in the staining rack while it is submerged in PB1. Put 4 BeadChips above the staining rack handle and 4 below the handle. Make sure that the BeadChip barcodes face away from you and that the locking arms on the handle face towards you.

If necessary, briefly lift the staining rack out of the wash dish to seat the BeadChip. Replace it immediately after inserting each BeadChip.

7 Make sure that the BeadChips are submerged.

CAUTION
Do not allow the BeadChips to dry. Submerge each BeadChip in the wash dish as soon as possible.

8 Slowly move the staining rack up and down 10 times, breaking the surface of the reagent.
NOTE
If the top edges of the BeadChips begin to touch during either PB1 or XC4 washes, gently move the staining rack back and forth to separate the slides. It is important for the solution to circulate freely between all BeadChips.

Figure 61 Washing BeadChips in PB1

9 Allow the BeadChips to soak for an additional 5 minutes.

CAUTION
Do not leave the BeadChips in the PB1 for more than 30 minutes.

10 Shake the XC4 bottle vigorously to ensure complete resuspension. If necessary, vortex until dissolved.

11 Pour 310 ml XC4 into the dish labeled “XC4,” and cover the dish to prevent any lint or dust from falling into the solution.

CAUTION
Do not let the XC4 sit for longer than 10 minutes.

12 Remove the staining rack from the PB1 dish and place it directly into the wash dish containing XC4. For proper handling and coating, The barcode labels on the BeadChips must face away from you; the locking arms on the handle must face towards you.
13 Slowly move the staining rack up and down 10 times, breaking the surface of the reagent.

NOTE
If the top edges of the BeadChips begin to touch during either PB1 or XC4 washes, gently move the staining rack back and forth to separate the slides. It is important for the solution to circulate freely between all BeadChips.

14 Allow the BeadChips to soak for an additional 5 minutes.

CAUTION
Use XC4 only one time. To process subsequent BeadChips, use a new, clean wash dish with fresh XC4.

15 Prepare 1 additional tube rack per 8 BeadChips (Illumina-provided from VWR catalog # 60916-748) that fits the internal dimensions of vacuum desiccator.

16 Remove the staining rack in one smooth, rapid motion and place it directly on the prepared tube rack, making sure the barcodes *face up*, and the locking arms and tabs *face down*.
To ensure uniform coating, place the staining rack on the center of the tube rack, avoiding the raised edges.

17 For each of the top 4 BeadChips, working top to bottom:
a Continuing to hold the staining rack handle, carefully grip each BeadChip at its barcode end with self-locking tweezers.

NOTE

The XC4 coat is slippery and makes the BeadChips difficult to hold. The self-locking tweezers grip the BeadChip firmly and help prevent damage.

b Place each BeadChip on a tube rack with the barcode *facing up and towards* you.

Figure 65 BeadChips on Tube Rack

18 Holding the top of the staining rack in position, gently remove the staining rack handle by grasping the handle between the thumb and forefinger. Push up the tab with your thumb and push the handle away from you (unlocking the handle), then pull up the handle and remove.
19 Remove the remaining BeadChips to the tube rack, with 6 BeadChips on top of the rack and 2 BeadChips on the bottom. Make sure that the barcode ends are towards you, and the BeadChips are completely horizontal.

CAUTION
To prevent wicking and uneven drying, do not allow the BeadChips to rest on the edge of the tube rack or to touch each other while drying.

20 Place the tube rack in the vacuum desiccator. Each desiccator can hold 1 tube rack (8 BeadChips).

CAUTION
Make sure that the vacuum valve is seated tightly and securely.

21 Remove the red plug from the three-way valve before applying vacuum pressure.

22 Start the vacuum, using at least 675 mm Hg (0.9 bar).
23 To make sure that the desiccator is properly sealed, gently lift the lid of the vacuum desiccator. It should not lift off the desiccator base.

Figure 67 Testing Vacuum Seal

24 Dry under vacuum for 50–55 minutes. Drying times can vary according to room temperature and humidity.

25 Release the vacuum by turning the handle very slowly.

WARNING

Make sure that air enters the desiccator very slowly to avoid disturbing the contents. Improper use of the vacuum desiccator can result in damage to the BeadChips, especially if you remove the valve plug while a vacuum is applied. For detailed vacuum desiccator instructions, see the documentation included with the desiccator.

26 Store the desiccator with the red valve plug in the 3-way valve of the desiccator to stop accumulation of dust and lint within the valve port.

27 Touch the borders of the BeadChips (do not touch the stripes) to make sure that the etched, barcoded sides are dry to the touch.
28 If the underside feels tacky, manually clean the underside of the BeadChip to remove any excess XC4. The bottom 2 BeadChips are most likely to have some excess.
 a Hold the BeadChip at a downward angle to prevent excess EtOH from dripping from the wipe onto the stripes.
 b Wipe along the underside of the BeadChip 5 or 6 times, until the surface is clean and smooth.

 CAUTION
 Do not touch the stripes with the wipe or allow EtOH to drip onto the stripes.

29 Clean the glass back plates. For instructions, see the *Infinium Lab Setup and Procedures Guide*.

30 Discard unused reagents in accordance with facility standards.

31 Do either of the following:
 • Proceed to *Image BeadChip (Post-Amp)*.
 • Store the BeadChips in the Illumina BeadChip Slide Storage Box at room temperature. Image the BeadChips within 72 hours.
Follow the instructions in the *iScan System User Guide* or *HiScan System User Guide* to scan your BeadChips. Use the appropriate scan setting for your BeadChip, as outlined in the following table:

Table 5 Scan Settings for Infinium LCG Quad

<table>
<thead>
<tr>
<th>BeadChip</th>
<th>Scan Setting Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanOmni5-4</td>
<td>Infinium LCG</td>
</tr>
</tbody>
</table>
The Illumina GenomeStudio Genotyping Module, included with your Illumina Infinium Assay system, is an application for extracting genotyping data from intensity data files (*.idat files) collected from systems such as the Illumina HiScan System.

For feature descriptions and instructions on using the GenomeStudio platform to visualize and analyze genotyping data, see the GenomeStudio Framework User Guide and the GenomeStudio User Guide or Online Help.
Automated Protocol

Introduction to Infinium LCG Quad Automated Protocol ... 96
Infinium LCG Quad Automated Workflow ... 97
Equipment, Materials, and Reagents ... 99
Quantify DNA (Optional) (Pre-Amp) ... 102
Make the AMP5 Plate ... 112
Incubate DNA (Post-Amp) ... 121
Fragment DNA (Post-Amp) ... 123
Precipitate DNA (Post-Amp) .. 129
Resuspend DNA (Post-Amp) ... 137
Hybridize to BeadChip (Post-Amp) ... 142
Wash BeadChips (Post-Amp) ... 160
Extend and Stain (XStain) BeadChip (Post-Amp) .. 172
Image BeadChip ... 195
Illumina GenomeStudio .. 196
Introduction to Infinium LCG Quad Automated Protocol

This chapter describes pre- and post-amplification automated laboratory protocols for the Infinium LCG Quad Assay. Follow the protocols in the order shown.

Some of the tasks in this chapter make reference to Illumina LIMS (Laboratory Information Management System). If you are not running Illumina LIMS, disregard those instructions. For information about how to use Illumina LIMS, see the *Illumina LIMS User Guide*.
Infinium LCG Quad Automated Workflow

The following figure graphically represents the Infinium LCG Quad Assay automated workflow, with or without Illumina LIMS. These protocols describe the procedure for preparing 24 DNA samples. To process 48 or 96 samples, scale up the protocols accordingly.
Figure 68 Infinium LCG Quad Assay Automated Workflow

Day 1

Quantitate DNA
Hands-on: ~20 min/plate
Robot: 20 min/plate
Reagents
Lambda DNA
PicoGreen dsDNA
1X TE
Output
Sample QNT Plate with Quantitated DNA

Make AMP5
Robot: 20 min/16 samples
Reagents
0.1N NaOH
RPM
AMM
Output
AMP5 Plate

Incubate AMP5
Incubation: 20–24 hours
Output
AMP5 Plate with Amplified DNA

Day 2

Fragment AMP5
Robot: 10 min/16 samples
Incubation: 60 min
Reagents
FRG
Output
AMP5 Plate

Precip AMP5
Robot: 25 min/48 samples
Incubation: 50 min
Dry: 60 min
Reagents
2-propanol
PA1
Output
AMP5 Plate

Resuspend AMP5
Robot: 15 min/48 samples
Incubation: 1 hour
Reagents
RA1
Output
BeadChip

Hyb Multi-Use
Robot: 20 min/12 BeadChips
Hands-on: ~30–45 min
Incubation: 16–24 hours
Reagents
PB2
Output
BeadChip

Day 3

Wash BeadChip
Hands-on: ~20 min/4 BeadChips
Output
BeadChip

XStain LCG BeadChip
Robot: ~2 hours 45 min/8 BeadChips
Dry Time: 1 hour
Reagents
RA1
95% Formamide / 1 mM EDTA
PB1
LX1
LX2
XC3
XC4
EML
SML
ATM
Output
BeadChip

Image BeadChip
HiScanSQ System
Scan Time:
60 min/BeadChip
iScan System Scan Time:
150 min/BeadChip
Output:
Image and Data Files

Fill in the lab tracking form and the sample sheet as you perform the assay.
These materials are specific to the automated Infinium LCG Quad Assay. For a list of other equipment, materials, and reagents needed in an Infinium LCG Quad Assay lab, see the *Infinium Lab Setup and Procedures Guide*.

User-Supplied Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Suggested Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum desiccator (1 per 8 BeadChips processed simultaneously)</td>
<td>VWR International catalog # 24988-197, www.vwr.com</td>
</tr>
<tr>
<td>Vacuum tubing</td>
<td>VWR International catalog # 62995-335, www.vwr.com</td>
</tr>
</tbody>
</table>
| 2 Tecan 8-tip robots (1 for pre- and 1 for post-amplification processes) | Non-Illumina LIMS customers
 • SC-30-401 (110 V) - North America and Japan
 • SC-30-402 (220 V) - EU and Asia Pacific (Except Japan)
Illumina LIMS customers
 • SC-30-403 (110 V) - North America and Japan
 • SC-30-404 (220 V) - EU and Asia Pacific (Except Japan) |
| Carboy > 10 L, 2 per robot, Pre-PCR | VWR International catalog # 25601-008, www.vwr.com |
| Forceps | VWR International catalog # 25601-008, www.vwr.com |
| Autodesiccator cabinet (Optional—Allows scanning of BeadChips up to 3 days after processing) | VWR International, Catalog # 74950-342, www.vwr.com |

Illumina-Supplied Equipment

<table>
<thead>
<tr>
<th>Item</th>
<th>Catalog or Part #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Sample BeadChip Alignment Fixture</td>
<td>Part # 218528</td>
</tr>
<tr>
<td>Robot BeadChip Alignment Fixture (6)</td>
<td>Part # 222691</td>
</tr>
<tr>
<td>Robot Tip Alignment Guide-F</td>
<td>Catalog # SE-104-1013, Part# 15024431</td>
</tr>
<tr>
<td>LCG glass back plates</td>
<td>Part # 15019708</td>
</tr>
<tr>
<td>LCG spacers (1 500-piece box supplied)</td>
<td>Part # 15021036</td>
</tr>
</tbody>
</table>
User-Supplied Materials

<table>
<thead>
<tr>
<th>Item</th>
<th>Suggested Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well, black, flat-bottom FLUOTRAC 200 plates</td>
<td>Greiner, catalog # 655076, www.gbo.com</td>
</tr>
<tr>
<td>Aluminum foil</td>
<td></td>
</tr>
<tr>
<td>Foil adhesive seals (Microseal "F")</td>
<td>MJ Research, Catalog # MSF-1001, www.mjr.com</td>
</tr>
<tr>
<td>Reservoir, full, 150 ml</td>
<td>Beckman Coulter, catalog # 372784, www.beckmancoulter.com</td>
</tr>
<tr>
<td>Reservoir, half, 75 ml</td>
<td>Beckman Coulter, catalog # 372786, www.beckmancoulter.com</td>
</tr>
<tr>
<td>Reservoir, quarter, 40 ml</td>
<td>Beckman Coulter, catalog # 372790, www.beckmancoulter.com</td>
</tr>
<tr>
<td>Reservoir frames, 2 per Tecan</td>
<td>Beckman Coulter, catalog # 372795, www.becmancoulter.com</td>
</tr>
<tr>
<td>Tube racks for vacuum desiccator (1 for every 8 BeadChips to be processed simultaneously; must fit internal dimensions of vacuum desiccator)</td>
<td>VWR catalog # 66023-526, www.vwr.com</td>
</tr>
<tr>
<td>Vacuum source (greater than 508 mm Hg (0.68 bar)</td>
<td></td>
</tr>
<tr>
<td>Vacuum gauge for vacuum desiccator (recommended)</td>
<td></td>
</tr>
</tbody>
</table>

Illumina-Supplied Materials

- WG#-AMP5 barcode labels
- WG#-DNA barcode labels

Illumina-Supplied Reagents

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>Anti-Stain Two-Color Master Mix</td>
</tr>
<tr>
<td>FRG</td>
<td>Fragmentation solution</td>
</tr>
<tr>
<td>RPM</td>
<td>Random Primer Mix</td>
</tr>
<tr>
<td>AMM</td>
<td>Amplification Master Mix</td>
</tr>
<tr>
<td>Item</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>PB1</td>
<td>Reagent used to prepare BeadChips for hybridization</td>
</tr>
<tr>
<td>PB2</td>
<td>Humidifying buffer used during hybridization</td>
</tr>
<tr>
<td>PA1</td>
<td>Precipitation solution</td>
</tr>
<tr>
<td>RA1</td>
<td>Resuspension, hybridization, and wash solution</td>
</tr>
<tr>
<td>SML</td>
<td>Signal Mix Long</td>
</tr>
<tr>
<td>EML</td>
<td>Extension Mix Long</td>
</tr>
<tr>
<td>LX1</td>
<td>Long XStain 1</td>
</tr>
<tr>
<td>LX2</td>
<td>Long XStain 2</td>
</tr>
<tr>
<td>XC3</td>
<td>XStain BeadChip solution 3</td>
</tr>
<tr>
<td>XC4</td>
<td>XStain BeadChip solution 4</td>
</tr>
</tbody>
</table>
Quantify DNA (Optional) (Pre-Amp)

This process uses the PicoGreen dsDNA quantification reagent to quantify double-stranded DNA samples. You can quantify up to 3 plates, each containing up to 96 samples. If you already know the concentration, proceed to Make the AMP5 Plate (Pre-AMP).

Illumina recommends the Molecular Probes PicoGreen assay to quantify dsDNA samples. The PicoGreen assay can quantify small DNA volumes and measures DNA directly. Other techniques might pick up contamination such as RNA and proteins. Illumina recommends using a spectrofluorometer because fluorometry provides DNA-specific quantification. Spectrophotometry might also measure RNA and yield values that are too high.

Estimated Time
Hands-on time: ~20 minutes per plate
Robot: 20 minutes per plate

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PicoGreen dsDNA quantification reagent</td>
<td>See Instructions</td>
<td>-25°C to -15°C</td>
<td>User</td>
</tr>
<tr>
<td>1X TE (10 mM Tris-HCl pH8.0, 1 mM EDTA (TE))</td>
<td>See Instructions</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Lambda DNA</td>
<td>See Instructions</td>
<td>2°C to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well 0.65 ml microplate</td>
<td>1 per 96 samples</td>
<td></td>
<td>General lab supplier</td>
</tr>
<tr>
<td>FLUOTRAC 200 96-well flat-bottom plate</td>
<td>1 per Standard DNA plate</td>
<td>1 per Sample DNA plate</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

NOTE
PicoGreen is susceptible to differential contaminants. False positives might occur for whole-genome amplification. Therefore, it is important to quantify the input into the whole-genome amplification reaction.
Preparation

- Thaw PicoGreen to room temperature in a light-impermeable container.
- Follow the instructions for preparing the robot before each use in the *Infinium Lab Setup and Procedures Guide*.
- Thaw the sample DNA plates to room temperature.
- Apply a QDNA barcode label to a new FLUOTRAC plate for each GS#-DNA plate to be quantified.
- Hand-label the microplate "Standard DNA".
- Hand-label 1 of the FLUOTRAC plates "Standard QDNA".
- In the sample sheet, enter the Sample_Name (optional) and Sample_Plate for each Sample_Well.

Make a Standard DNA Plate

In this process, you create a Standard DNA plate with serial dilutions of stock Lambda DNA in the wells of column 1.

1. Add stock Lambda DNA to well A1 in the plate labeled "Standard DNA" and dilute it to 75 ng/μl in a final volume of 233.3 μl. Pipette up and down several times.
 a. Use the following formula to calculate the amount of stock Lambda DNA to add to A1:
 \[
 \frac{(233.3 \, \mu l) \times (75 \, \text{ng/\mu l})}{\text{stock Lambda DNA concentration}} = \mu l \, \text{of stock Lambda DNA to add to A1}
 \]
 b. Dilute the stock DNA in well A1 using the following formula:
 \[
 \mu l \, \text{of 1X TE to add to A1} = 233.3 \, \mu l - \mu l \, \text{of stock Lambda DNA in well A1}
 \]
2. Add 66.7 μl 1X TE to well B1.
3. Add 100 μl 1X TE to wells C, D, E, F, G, and H of column 1.
4 Transfer 133.3 μl of Lambda DNA from well A1 into well B1. Pipette up and down several times.

5 Change tips. Transfer 100 μl from well B1 into well C1. Pipette up and down several times.

6 Repeat for wells D1, E1, F1, and G1, changing tips each time. Do not transfer from well G1 to H1. Well H1 serves as the blank 0 ng/μl Lambda DNA.

Table 6 Concentrations of Lambda DNA

<table>
<thead>
<tr>
<th>Row-Column</th>
<th>Concentration (ng/μl)</th>
<th>Final Volume in Well (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>B1</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>C1</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>D1</td>
<td>12.5</td>
<td>100</td>
</tr>
<tr>
<td>Row-Column</td>
<td>Concentration (ng/µl)</td>
<td>Final Volume in Well (µl)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>E1</td>
<td>6.25</td>
<td>100</td>
</tr>
<tr>
<td>F1</td>
<td>3.125</td>
<td>100</td>
</tr>
<tr>
<td>G1</td>
<td>1.5262</td>
<td>200</td>
</tr>
<tr>
<td>H1</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 70: Serial Dilutions of Lambda DNA

7 Cover the Standard DNA plate with a cap mat.

Dilute PicoGreen

The diluted PicoGreen is added to both the Standard QDNA and Sample QDNA plates to make the DNA fluoresce when read with the spectrofluorometer.

CAUTION

Do not use glass containers for the PicoGreen reagent. PicoGreen degrades quickly in the presence of light and can adhere to glass, which lowers its effective concentration in solution and effects the upper response range accuracy.
1. Prepare a 1:200 dilution of PicoGreen into 1X TE using a sealed 100 ml or 250 ml Nalgene bottle wrapped in aluminum foil. Refer to the following table to identify the volumes to produce diluted reagent for multiple 96-well QDNA plates. For fewer than 96 DNA samples, scale down the volumes.

Table 7 Volumes for PicoGreen Reagents

<table>
<thead>
<tr>
<th># QDNA Plates</th>
<th>PicoGreen Volume (µl)</th>
<th>1X TE Volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>115</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>215</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>315</td>
<td>63</td>
</tr>
</tbody>
</table>

2. Cap the foil-wrapped bottle and vortex to mix.

Create QDNA Standard and Sample Plates

In this process, PicoGreen is distributed to Standard QDNA and Sample QDNA FLUOTRAC plates and mixed with aliquots of DNA from the respective DNA plates.

CAUTION

Do not run any other programs or applications while using the Tecan robot. Your computer and the robot might lock up and stop a run.

1. At the robot PC, select **DNA Quant | Make Quant**.

2. In the DNA Plate Selection dialog box, select the plate type of the Standard DNA and Sample DNA plates. They should all be midi plates, TCY plates, or ABGN plates. Roll the mouse pointer over each picture to see a description of the plate.

Figure 71 DNA Plate Selection Dialog Box
3 In the Basic Run Parameters pane, enter the **Number of DNA/QDNA plates** (1, 2, or 3 pairs) and the **Number of DNA Samples**. The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.

Figure 72 Make QDNA Screen

4 Vortex the GS#-DNA Sample plate at 1450 rpm for 1 minute.

5 Centrifuge the GS#-DNA Sample plate to 280 × g for 1 minute.

6 Vortex the Standard DNA plate at 1450 rpm for 1 minute.

7 Centrifuge the Standard DNA plate at 280 × g for 1 minute.

8 Place the GS#-DNA Sample, Standard DNA, Standard QDNA, and QDNA Sample plates on the robot bed according to the robot bed map. Place well A1 at the top-left corner of its robot bed carrier. Remove any plate seals.

9 Pour the PicoGreen dilution into half reservoir A and place it on the robot bed.
10 Make sure that all items are placed correctly on the robot bed, that all caps and seals have been removed, and that all barcodes face to the right.

11 On the lab tracking form, record the position of the plates on the robot bed.

12 Clear the **Use Barcodes** checkbox.

13 Click **Run**. Observe the beginning of the robot run to make sure that there are no problems.

The robot transfers 195 μl of diluted PicoGreen to all FLUOTRAC plates, then transfers 2 μl aliquots of DNA from the Standard DNA plate to the Standard QDNA plate and from the GS#-DNA plate to the sample QDNA plates.

The robot PC sounds an alert and opens a message when the process is complete.

14 Click **OK** in the message box.

15 On the lab tracking form, record:
 - Date/Time
 - Operator
 - Robot
 - The QDNA barcode that corresponds to each GS#-DNA barcode
 - The Standard QDNA plate that corresponds to each Standard DNA plate

16 After the robot finishes, immediately seal all plates:
 a. Place foil adhesive seals over Sample QDNA and Standard QDNA plates.
 b. Place cap mats on GS#-DNA Sample and Standard DNA plates.

17 Discard unused reagents in accordance with facility requirements.

18 Store the GS#-DNA and Standard DNA plates at 2°C to 8°C or -25°C to -15°C.

19 Centrifuge the Sample QDNA Plate and Standard QDNA plates to 280 × g for 1 minute.

Read the QDNA Plate

In this process, you use the Gemini XS or XPS Spectrofluorometer along with the Illumina Fluorometry Analysis software to read the Standard QDNA and Sample QDNA plates. You use the software to create a standard curve based on the quantities of Standard DNA with PicoGreen. Then you read the Sample QDNA plates to compare their data against the standard curve to obtain the concentration of sample DNA. For the best performance, Illumina recommends a minimum concentration of 50 ng/μl.
1. Turn on the spectrofluorometer.
2. At the PC, open the Illumina Fluorometry Analysis program.

Figure 73 Illumina Fluorometry Analysis Main Screen

3. Select **Reader Tasks | Read Quant**.
4. (Non-Illumina LIMS) Clear the **Use Barcodes** checkbox.
5. (Illumina LIMS) Make sure that the **Use Barcodes** checkbox is checked.
6. Click **Read**.
7. (Illumina LIMS) When prompted, log in to the Illumina LIMS database.
8. When asked if you want to read a new Standard plate, click **Yes**.
9. Remove the plate seal and load the Standard QDNA plate into the fluorometry tray. Click **OK**. The spectrofluorometer reads the plate data.
10. Review the data from the Standard QDNA plate. Either accept it and go on to the next step, or reject it. Rejecting the data stops the Read Quant process.
11. Remove the Standard QDNA place from the spectrofluorometer tray.
12 When prompted, enter the number of plates you want to read (1, 2, or 3). Do not include the Standard QDNA plate in this number. Click **OK**.

13 When prompted, hand-scan the Sample QDNA plate barcode. Click **OK**.

14 When prompted, remove the plate seal from the Sample QDNA plate and load it into the spectrofluorometer tray, with well A1 at the upper left corner. Click **OK**. The spectrofluorometer reads the plate data.

15 Remove the Standard QDNA plate from the spectrofluorometer tray.

16 When prompted, click **Yes** to review the raw Sample QDNA plate data.

Figure 74 Sample QDNA Data

![Sample QDNA Data](image)

17 Microsoft Excel opens automatically at the same time and displays the quantification data for the Sample QDNA plate. There are 3 tabs in the file:

- **SQDNA_STD**—Generates the standard curve by plotting the Relative Fluorescence (RF) values measured in the Standard QDNA plate against assumed concentrations in the Standard DNA Plate.

- **QDNA**—Plots the concentration (ng/μl) of each well of the Sample QDNA Plate as derived from the standard curve.
• **Data**—A readout of the raw data values for the Standard QDNA plate and the Sample QDNA Plate.

18 The Illumina Fluorometry Analysis software prompts you to indicate whether you wish to save the QDNA data shown in an Excel file. Select the option you prefer:

- Click **Yes** to save.
 (Illumina LIMS only) The data are sent to Illumina LIMS. In Illumina LIMS, the QDNA plate moves into the *Make Single-Use DNA (SUD) Plate (Pre-PCR)* queue.
- Click **No** to delete the quant data. You can read the same plate for quant data repeatedly.

19 If you entered more than one Sample QDNA plate to read, repeat steps 13 to 16 for each additional plate.

20 Discard the QDNA plates and reagents in accordance with facility requirements.

21 Do either of the following:

- Proceed to *Make the AMP5 Plate (Pre-AMP)*.
- Store the Sample QDNA plate at 2° to 8°C for up to one month.

SAFE STOPPING POINT

Now is a good stopping point in the process.
Make the AMP5 Plate

This process creates an AMP5 plate for DNA amplification. The DNA sample is denatured with 0.1N NaOH and then neutralized with RPM. The last reagent added is AMM (Amplification Master Mix).

![Denaturing and Neutralizing DNA](image)

Estimated Time

Robot time:
- 20 minutes for 16 samples
- 30 minutes for 32 samples
- 55 minutes for 48 samples

Incubation time: ~20–24 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPM</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>AMM</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>
Item Quantity Storage Supplied By

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1N NaOH</td>
<td>15 ml (per 96 samples)</td>
<td>2° to 8°C</td>
<td>User</td>
</tr>
<tr>
<td>96-well 0.8 ml microplate (midi plate)</td>
<td>1 plate for up to 48 samples</td>
<td></td>
<td>User</td>
</tr>
<tr>
<td>DNA plate with DNA samples</td>
<td>1 plate</td>
<td>-25°C to -15°C</td>
<td>User</td>
</tr>
</tbody>
</table>

NOTE

Thaw all reagents completely at room temperature and allow to equilibrate. After thawed, gently invert each tube several times to mix the reagent thoroughly. Pulse centrifuge each tube to 280 × g to eliminate bubbles and collect reagent at the bottom of the tube.

Preparation

- In preparation for the Incubate AMP5 process, preheat the Illumina Hybridization Oven in the post-amp area to 37°C and allow the temperature to equilibrate.
- Prepare the Illumina Hybridization Oven as follows:
 - Preheat the oven to 37°C:
 - Press the "F" button one time to change the display to TSET.
 - Press the "S" button to enter the set-temperature mode, and then use the Increment/Decrement dial to set the oven to 37°C.
 - Press the "S" button again to set 37°C as the temperature.
 - Set the rocker speed to 5:
 - Press the "F" button twice until SPd is indicated on the display.
 - Press the "S" button to enter the rocker speed mode.
 - Use the Increment/Decrement dial to set the rocker speed to "5".
 - Press the "S" button again.
 - Calibrate the Illumina Hybridization Oven with the Full-Scale Plus digital thermometer supplied with your system.
 - In the sample sheet, enter the Sample_Name and Sample_Plate for each Sample_Well.
 - Apply an AMP5 barcode label to a new midi plate.
 - Thaw RPM and AMM tubes to room temperature.
 - Thaw DNA samples to room temperature.
 - On the lab tracking form, record:
Automated Protocol

- Date/Time
- Operator
- Robot
- Batch number
- Number of samples (48 or 96)
- DNA plate barcodes
- AMP5 plate barcodes
- RPM tube barcodes
- AMM tube barcodes

NOTE
To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Prepare Robot

For instructions on preparing the robot for use in a protocol, see the Infinium Assay Lab Setup and Procedures Guide.

Refer to the following figure throughout this protocol. All of the barcodes face to the right.
Steps to Make the AMP5 Plate

1. If you do not already have a WG#-DNA plate, add DNA into either of the following:
 - Midi plate: 40 μl to each WG#-DNA plate well
 - TCY plate: 30 μl to each WG#-DNA plate well
 Apply a barcode label to the new DNA plate.

2. At the robot PC, select AMP5 Tasks | Make AMP5.
 Alternative: select AMP5 Tasks | Make Multi-AMP5 to run multiple AMP5 plates.

3. In the Plate Selection dialog box, click the plate type you wish to use. Roll the mouse pointer over each picture to see a description of the plate.
4 (Non-Illumina LIMS) Make sure that the Use Barcodes checkbox is cleared. In the Basic Run Parameters pane, enter the Number of DNA samples (16, 32, or 48) that are in the plate.

NOTE
If you are using Illumina LIMS, you cannot change the number of DNA samples on this screen. However, the LIMS software processes the correct number of samples.

You can process up to 48 DNA samples per robot run. The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.

NOTE
If you are using Illumina LIMS, click Run and select batches before the robot bed map displays the correct layout for the WG#-DNA plates.
5 Remove caps from the RPM and AMM tubes, then place the tubes in the robot standoff tube rack according to the bed map.

6 Add 15 ml NaOH to the quarter reservoir, then place the reservoir on the robot bed according to the bed map.

7 Place the WG#-DNA and AMP5 plates on the robot bed according to the bed map.

8 In the lab tracking form, record the plate positions on the robot bed.

9 Make sure that all items are placed correctly on the robot bed, that all caps and seals have been removed, and that all barcodes face to the right.

10 (Non-Illumina LIMS) At the robot PC, click Run.

11 (Illumina LIMS) At the robot PC:
 a Make sure that the Use Barcodes checkbox is checked.
 b Click Run to start the process. Log in if prompted.
12 After the robot initializes, the **Make AMP5** screen appears after a moment.

Figure 79 Selecting Project Batch for Make AMP5

13 Do either of the following:
 - Select your current project. The available batches appear in the Sample Batch ID pane. Select a batch to see the associated DNA plate appear in the DNA Plates pane.
Figure 80 Make AMP5 Screen with Project and Batch Selected

- Use the **Search** box to search for a specific Batch ID or DNA Plate.

14 (Illumina LIMS) Select the batch you want to run, and then click **OK**.

15 (Illumina LIMS) Click **OK** to confirm the required DNAs.
16 When prompted, enter the barcode of each WG#-DNA plate. The robot bed map is updated with the WG#-DNA plate locations.

17 Place the WG#-DNA plates on the robot bed according to the bed map and click OK. The robot begins running when the plates are in place. The Wait for reaction time message appears. The wait time for this reaction is 10 minutes. The robot PC sounds an alert and displays a message when the process is complete.

18 Click OK in the message box.

19 Remove the AMP5 plate from the robot bed and seal with a 96-well cap mat.

20 Invert the sealed AMP5 plate at least 10 times to mix contents.

21 Centrifuge at 280 × g.

22 Record the location of DNA samples in the lab tracking worksheet.

23 Discard unused reagents in accordance with facility standards.

24 Proceed immediately to *Incubate the AMP5 Plate*.
Incubate DNA (Post-Amp)

This process incubates the AMP5 plate for 20–24 hours at 37°C in the Illumina Hybridization Oven. The process uniformly amplifies the genomic DNA, generating a sufficient quantity of each individual DNA sample to be used when in the Infinium LCG Quad Assay.

![Incubating DNA to Amplify](image)

Estimated Time

Incubation time: 20–24 hours

Verify AMP5 for Incubation (LIMS only)

1. In the Illumina LIMS left pane, click **Infinium LCG Quad | Incubate AMP5**.
2. Scan the barcode of the AMP5 plate, click **Verify**, and then click **Save**.
3. If the AMP5 plate is queued for incubation, a blue confirmation message appears at the top of the window. Proceed to **Steps to Incubate the AMP5 Plate**.
4. If the AMP5 plate is not queued for incubation, a red error message appears at the top of the window. Do **not** proceed with incubation. Instead, follow these steps to troubleshoot the problem:
 a. Click the Reports tab in the upper-right corner.
 b. In the left pane, click **Tracking Reports | Get Queue Status**.
 c. Scan the plate barcode and click **Go**.
d. Note what step the plate is queued for, and proceed with that step.

For information about how to use Illumina LIMS, see the *Illumina LIMS User Guide*.

Steps to Incubate AMP5 Plate

OVERNIGHT INCUBATION

Incubate AMP5 plate in the Illumina Hybridization Oven for at least 20 hours but no more than 24 hours at 37°C.

1. Record the start and stop times on the lab tracking form.

 NOTE

 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

2. Proceed to the next step.
Fragment DNA (Post-Amp)

This process enzymatically fragments the amplified DNA samples. An endpoint fragmentation is used to prevent overfragmentation.

Figure 83 Fragmenting DNA

Estimated Time

Robot time:
- 10 minutes for 16 samples

Incubation time: 1 hour

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRG</td>
<td>1 tube (per 16 samples)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>

NOTE

Thaw all reagents completely at room temperature and allow to equilibrate. After thawed, gently invert each tube several times to mix the reagent thoroughly. Pulse centrifuge each tube to 280 x g to eliminate bubbles and collect reagent at the bottom of the tube.
Preparation

1. Preheat the heat block with the midi plate insert to 37°C.
2. Thaw FRG tubes to room temperature. Gently invert at least 10 times to mix contents.
3. Remove the AMP5 plate from the Illumina Hybridization Oven.
4. If you plan to Resuspend the AMP5 plate today, remove the RA1 from the freezer to thaw.

- On the lab tracking form, record:
 - Date/Time
 - Operator
 - Robot
 - FRG tube barcodes

NOTE
To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.
Prepare Robot

For instructions on preparing the robot for use in a protocol, see the *Infinium Assay Lab Setup and Procedures Guide*.

CAUTION
Do not run any other programs or applications while using the Tecan robot. Your computer and the robot might lock up and stop a run.

Refer to the following figure throughout this protocol.

Figure 84 Tecan 8-Tip Robot (Fragment AMP5 Setup)

Steps to Fragment the AMP5 Plate

1. Pulse centrifuge the AMP5 plate to 280 × g.
2. Remove the cap mat.
3. At the robot PC, select **AMP5 Tasks | Fragment AMP5**.
4. (Non-Illumina LIMS) Make sure that the **Use Barcodes** checkbox is cleared. In the **Basic Run Parameters** pane, change the value for **Number of AMP5 plates** and **Number of DNA samples per plate** to indicate the number of samples being processed.

NOTE
If you are using Illumina LIMS, you cannot change the number of DNA samples on this screen. However, the LIMS software processes the correct number of samples.

The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.

Figure 85 Fragment AMP5 Screen
5 Place the AMP5 plate on the robot bed according to the bed map.
6 Place FRG tubes in the robot tube rack according to the bed map. Remove the cap.
7 On the lab tracking form, record the plate positions on the robot bed.

Start the Robot

1 (Non-Illumina LIMS) At the robot PC, click Run.
2 (Illumina LIMS) At the robot PC:
 a Make sure that the Use Barcodes checkbox is selected.
 b Click Run to start the process. Log in if prompted.
 The robot PC sounds an alert and displays a message when the process is done.
3 When the robot finishes, click OK in the message box.
4 Remove the AMP5 plate from the robot bed and seal it with a cap mat.
5 Vortex at 1600 rpm for 1 minute.
6 Pulse centrifuge to 280 × g.
7 Place the sealed plate on the 37°C heat block for 1 hour.
8 Record the start and stop times on the lab tracking form.
9 Discard unused reagents in accordance with facility standards.
10 Do one of the following:
 • Proceed to Precipitate DNA (Post-Amp). Leave plate in 37°C heat block until you have completed the preparatory steps. Do not leave the plate in the 37°C heat block for longer than 2 hours.
 • If you do not plan to proceed to the next step within the next 4 hours, store the sealed AMP5 plate at -25°C to -15°C for more than 24 hours.

SAFE STOPPING POINT
Now is a good stopping point in the process.
Precipitate DNA (Post-Amp)

PA1 and 2-propanol are added to the AMP5 plate to precipitate the DNA samples.

Estimated Time

Robot time:
- 15 minutes for 16 samples

Incubation and dry time: 2 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA1</td>
<td>1 tube (per 16 samples)</td>
<td>2°C to 8°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>100% 2-propanol</td>
<td>40 ml (per 48 samples)</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

NOTE

Thaw all reagents completely at room temperature and allow to equilibrate. After thawed, gently invert each tube several times to mix the reagent thoroughly. Pulse centrifuge each tube to 280 × g to eliminate bubbles and collect reagent at the bottom of the tube.

Preparation

1. Preheat the heat block to 37°C.
2 If you froze the AMP5 plate overnight, thaw it to room temperature, then pulse centrifuge to 280 × g.

3 Thaw PA1 to room temperature. Gently invert at least 10 times to mix contents.
 a On the lab tracking form, record:
 • Date/Time
 • Operator
 • Robot
 • PA1 tube barcodes
 • 2-propanol lot number and date opened

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Prepare Robot

For instructions on preparing the robot for use in a protocol, see the Infinium Assay Lab Setup and Procedures Guide.

Refer to the following figure throughout this protocol. Barcodes face to the right.
Verify AMP5 for Centrifugation (LIMS only)

1. In the Illumina LIMS left pane, click Infinium LCG Quad | Spin AMP5.
2. Scan the barcodes of the AMP5 plates and click Verify, then click Save.
3. If the AMP5 plate is queued for centrifugation, a blue confirmation message appears at the top of the window.
4. If the AMP5 plate is not queued for centrifugation, a red error message appears at the top of the window. Do not proceed with centrifugation. Instead, follow these steps to troubleshoot the problem:
 a. Click the Reports tab in the upper-right corner.
 b. In the left pane, click Tracking Reports | Get Queue Status.
 c. Scan the plate barcode and click Go.
 d. Note what step the plate is queued for, and proceed with that step.

For information about how to use Illumina LIMS, see the Illumina LIMS User Guide.
Steps to Precipitate the AMP5 Plate

1. At the robot PC, select **AMP5 Tasks | Precip AMP5**.

2. (Non-Illumina LIMS) Make sure that the **Use Barcodes** checkbox is cleared. In the **Basic Run Parameters** pane, change the value for **Number of AMP5 plates** and **Number of DNA samples per plate** to indicate the number of samples being processed.

 NOTE
 If you are using Illumina LIMS, you cannot change the number of DNA samples on this screen. However, the LIMS software processes the correct number of samples.

The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.

Figure 88 Precip AMP5 Screen
3 Pulse centrifuge the sealed AMP5 plate at 280 × g.
4 Remove the cap mat and place the AMP5 plate on the robot bed according to the bed map.
5 Place a half reservoir in the reservoir frame, according to the robot bed map, and add PA1 as follows:
 • For 16 samples: 1 tube
 • For 32 samples: 2 tubes
 • For 48 samples: 3 tubes
6 Place a full reservoir in the reservoir frame, according to the robot bed map, and add 2-propanol as follows:
 • For 16 samples: 20 ml
 • For 32 samples: 30 ml
 • For 48 samples: 40 ml
7 In the lab tracking form, record the plate positions on the robot bed.
8 Make sure that all items are placed properly on the robot bed, that all caps and seals have been removed, and that all the barcodes face to the right.

Start the Robot

1 (Non-Illumina LIMS) At the robot PC, click Run.
2 (Illumina LIMS) At the robot PC:
 a Make sure that the Use Barcodes checkbox is selected.
 b Click Run to start the process. Log in if prompted.
 The robot PC sounds an alert and opens a message when the process is complete.
3 When prompted, remove the AMP5 plate from the robot bed. Do not click OK in the message box yet.
4 Seal the AMP5 plate with the same cap mat removed earlier.
5 Vortex the sealed plate at 1600 rpm for 1 minute.
6 Incubate at 37°C for 5 minutes.
7 Pulse centrifuge to 280 × g.
NOTE
Set the centrifuge to 4°C in preparation for the next centrifuge step.

8 Remove the cap mat and discard it.
9 Place the AMP5 plate back on the robot bed according to the bed map.
10 Click OK in the message box.
 The robot PC sounds an alert and opens a message when the process is complete.
11 Click OK in the message box. Remove the AMP5 plate from the robot bed and carefully seal with a new, dry cap mat, taking care not to shake the plate in any way until the cap mat is fully seated.
12 Invert the plate at least 10 times to mix contents thoroughly.
13 Incubate at 4°C for 30 minutes.
14 Place the sealed AMP5 plate in the centrifuge opposite another plate of equal weight.

Figure 89 Sealed AMP5 Plate and Plate of Equal Balance in Centrifuge

15 Centrifuge at 3000 × g at 4°C for 20 minutes. Immediately remove the AMP5 plate from centrifuge.
CAUTION
Perform the next step immediately to avoid dislodging the blue pellet. If any delay occurs, repeat the 20-minute centrifugation before proceeding.

16 Remove the cap mat and discard it.

17 Quickly invert the AMP5 plate and drain the liquid onto an absorbent pad to decant the supernatant. Then smack the plate down on a dry area of the pad, avoiding the liquid that was drained onto the pad.

18 Tap firmly several times for 1 minute or until all wells are devoid of liquid.

CAUTION
Keep the plate inverted. To ensure optimal performance, do not allow supernatant in wells to pour into other wells.

19 Leave the uncovered, inverted plate on the tube rack for 1 hour at room temperature to air dry the pellet.
You can expect to find blue pellets at the bottoms of the wells.

Figure 90 Uncovered AMP5 Plate Inverted for Air Drying

CAUTION
Do not overdry the pellet. Pellets that are overdried are difficult to resuspend. Poorly resuspended samples lead to poor data quality.

20 Record the start and stop times on the lab tracking form.

21 Discard unused reagents in accordance with facility standards.
22 Do either of the following:
 • Proceed to *Resuspend DNA (Post-Amp)*.
 • If you do not plan to proceed to the next step immediately, seal the AMP5 plate
 with a new cap mat and store at -25°C to -15°C for no more than 24 hours.

SAFE STOPPING POINT
Now is a good stopping point in the process.
Resuspend DNA (Post-Amp)

RA1 is added to the AMP5 plate to resuspend the precipitated DNA samples.

Estimated Time

Robot time:
- 15 minutes for 48 samples

Incubation time: 1 hour

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA1</td>
<td>9 ml for 48 samples</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
</tbody>
</table>

NOTE
Pour out only the recommended volume of RA1 needed for the suggested number of samples listed in the consumables table. Additional RA1 is used later in the XStain BeadChip step.

WARNING
This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.
Preparation

1. RA1 is shipped frozen. Gradually warm the reagent to room temperature, preferably in a 20°C to 25°C water bath. Gently mix to dissolve any crystals that might be present.

2. If you stored the AMP5 plate at -25°C to -15°C, thaw it to room temperature. Remove the cap mat and discard it.

3. Preheat the Illumina Hybridization Oven to 48°C.

4. Preheat the heat sealer. Allow 20 minutes.

 - On the lab tracking form, record:
 - Date/Time
 - Operator
 - Robot
 - RA1 bottle barcodes

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Use Fresh RA1 Reagent for Each Step

It is important to use fresh RA1 for each protocol step in the assay where it is required. RA1 that has been stored properly and has not been dispensed for use in either the XStain or Resuspension step is considered fresh RA1. After RA1 has been poured out into a reservoir and exposed to room temperature air for extended periods of time, it is no longer fresh.

To make best use of RA1, only pour out the amount needed for the current step. If you plan to perform additional assay steps requiring RA1 that same day, then leave the remaining thawed reagent in the original, closed bottle at room temperature until it is needed. Otherwise, follow the standard RA1 storage procedures described in this assay guide for next-day processing and prolonged storage conditions.

Prepare Robot

For instructions on preparing the robot for use in a protocol, see the *Infinium Assay Lab Setup and Procedures Guide*.
Refer to the following figure throughout this protocol. Barcodes face to the right.

Figure 92 Tecan 8-Tip Robot (Resuspend AMP5 Setup)

Steps to Resuspend the AMP5 Plate

1. At the robot PC, select **AMP5 Tasks | Resuspend AMP5**.
2. (Non-Illumina LIMS) In the **Basic Run Parameters** pane, change the value for **Number of AMP5 plates** and **Number of DNA samples per plate** to indicate the number of samples being processed.

 NOTE
 If you are using Illumina LIMS, you cannot change the number of DNA samples on this screen. However, the LIMS software processes the correct number of samples.

 The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.
3 Place the AMP5 plate on the robot bed according to the bed map.

4 Place a quarter reservoir in the reservoir frame, according to the robot bed map, and add RA1 as follows:
 - 4 ml for 16 samples
 - 7 ml for 32 samples
 - 9 ml for 48 samples

5 In the lab tracking form, record the plate positions on the robot bed and RA1 barcodes.

6 Make sure that all items are placed correctly on the robot bed, that all caps and seals have been removed, and that all barcodes face to the right.

Start the Robot

1 (Non-Illumina LIMS) At the robot PC, click Run.

2 (Illumina LIMS) At the robot PC:
 a Make sure that the Use Barcodes checkbox is checked.
 b Click Run to start the process. Log in if prompted. The robot PC sounds an alert and opens a message when the process is complete.

3 Click OK in the message box. Remove the AMP5 plate from the robot bed.

4 Apply a foil seal to the AMP5 plate by firmly holding the heat sealer block down for 3 full seconds.

5 Immediately remove the AMP5 plate from the heat sealer and forcefully roll the rubber plate sealer over the plate until you can see all 96 well indentations through the foil. Repeat application of the heat sealer if all 96 wells are not defined.

6 Place the sealed plate in the Illumina Hybridization Oven and incubate for 1 hour at 48°C.

7 Record the start and stop times on the lab tracking form.

8 Vortex the plate at 1800 rpm for 1 minute.

9 Pulse centrifuge to 280 × g.
NOTE
If you stored the DNA pellets at -25°C to -15°C for more than 72 hours, you might need to revortex and centrifuge until the pellets are resuspended.

10 Discard unused reagents in accordance with facility standards.

11 Do either of the following:
 • Proceed to Hybridize to BeadChip (Post-Amp). If you plan to do so immediately, it is safe to leave the RA1 at room temperature.
 • If you do not plan to proceed to the next step immediately, store the sealed AMP5 plate at -25°C to -15°C for no more than 24 hours. Store at -80°C if storing for more than 24 hours. Store RA1 at -25°C to -15°C.

SAFESTOPPINGPOINT
Now is a good stopping point in the process.
Hybridize to BeadChip (Post-Amp)

In this process, the fragmented and resuspended DNA samples are dispensed onto the BeadChips. DNA-loaded BeadChips are placed into Hyb Chamber Inserts that are placed inside the Hyb Chambers.

When the DNA samples have been loaded into the flow-through chambers, incubate the chambers for 16–24 hours at 48°C in the Illumina Hybridization Oven. Hybridization occurs during the incubation period. Each sample is hybridized to an individual section of the BeadChip.

Estimated Time

Robot time:
- 4x1 LCG BeadChip: ~20 minutes for 12 BeadChips (48 samples)

Incubation time: 16–24 hours

Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity (per 16 Samples)</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB2</td>
<td>2 tubes</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>BeadChips</td>
<td>4</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity (per 16 Samples)</td>
<td>Storage</td>
<td>Supplied By</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Hyb chambers</td>
<td>1 (per 16 samples)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Hyb chamber gaskets</td>
<td>1</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Hyb chamber inserts</td>
<td>4</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Robot BeadChip alignment fixtures</td>
<td>2</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>1% aqueous Alconox solution</td>
<td>As needed</td>
<td></td>
<td>User</td>
</tr>
</tbody>
</table>

NOTE
Thaw all reagents completely at room temperature and allow to equilibrate. After thawed, gently invert each tube several times to mix the reagent thoroughly. Pulse centrifuge each tube to 280 × g to eliminate bubbles and collect reagent at the bottom of the tube.

Preparation

1. If frozen, thaw AMP5 plate to room temperature, and then pulse centrifuge the AMP5 plate to 280 × g.
2. Preheat the heat block to 95°C.
3. Prepare the Illumina Hybridization Oven as follows:
 a. Preheat the oven to 48°C:
 — Press the "F" button one time to change the display to TSET.
 — Press the "S" button to enter the set-temperature mode, and then use the Increment/Decrement dial to set the oven to 48°C.
 — Press the "S" button again to set 48°C as the temperature.
 b. Set the rocker speed to 5:
 — Press the "F" button twice until SPd is indicated on the display.
 — Press the "S" button to enter the rocker speed mode.
 — Use the Increment/Decrement dial to set the rocker speed to "5".
 — Press the "S" button again.
4 Calibrate the Illumina Hybridization Oven with the Full-Scale Plus digital thermometer supplied with your system.

5 On the lab tracking form, record:
 • Date/Time
 • Operator
 • PB2 tube lot number

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Prepare the Robot Tip Alignment Guide

1 Make sure that you have the correct Robot Tip Alignment Guide for the Infinium assay you are running. The barcode says **Guide-F**.

 Figure 95 Guide-F Robot Tip Alignment Guide

2 Wash and dry the entire one-piece Robot Tip Alignment Guide. See *Wash Robot Tip Alignment Guide* at the end of the *Hybridize to BeadChip* steps for washing instructions.

3 Place the assembled Robot Tip Alignment Guides on the lab bench until it is time to place them on the robot bed.
Assemble the Hybridization Chambers

1. Place the resuspended AMP5 plate on the heat block to denature the samples at 95°C for 20 minutes.
2. Remove the BeadChips from 2°C to 8°C storage, leaving the BeadChips in their plastic bags and mylar packages until you are ready to begin hybridization.
3. During the 20 minute incubation, prepare the Hyb Chambers.
 Place the following items on the benchtop for use in this procedure:

 Figure 96 BeadChip Hyb Chamber Components

 A BeadChip Hyb Chambers
 B Hyb Chamber Gaskets
 C Hyb Chamber Inserts
NOTE
To ensure optimal results from Hyb Chambers, keep the Hyb Chamber lids and bases together. Adopt a labeling convention that keeps each Hyb Chamber base paired with its original lid. Check Hyb Chamber lid-base pairs regularly to make sure that the fit remains secure. Check hinges regularly for any signs of abnormal wear or loose fittings. It is important that the hinges provide adequate clamping strength to ensure an airtight seal between the lid and the base. Record the Hyb Chamber that was used for each BeadChip, so that Hyb Chambers can be investigated and evaluated in the event of sample evaporation or other lab processing anomalies.

a Place the BeadChip Hyb Chamber gaskets into the BeadChip Hyb Chambers.
 — Match the wider edge of the Hyb Chamber Gasket to the barcode-ridge side of the Hyb Chamber.

Figure 97 Hyb Chamber and Gasket

A Reservoirs
B Barcode Ridges
C Narrower Edges
D Wider Edges
 — Lay the gasket into the Hyb Chamber, and then press it down all around.
Figure 98 Placing Gasket into Hyb Chamber

- Make sure that the Hyb Chamber gaskets are properly seated.

Figure 99 Hyb Chamber with Gasket in Place

b Dispense 400 μl PB2 into the humidifying buffer reservoirs in the Hyb Chambers.
WARNING
Do not replace PB2 in the Hyb Chamber with RA1. RA1 decreases the
stringency and can negatively affect sample call rates and logRdev. PB2 is
formulated to produce the appropriate amount of humidity within the Hyb
Chamber environment to prevent sample from evaporating during
hybridization.

c After you fill the Hyb Chamber reservoirs with PB2, place the lid on the Hyb
Chamber right away to prevent evaporation. It is not necessary to lock the lid.
d Leave the closed Hyb Chambers on the bench at room temperature until the
BeadChips are loaded with DNA sample. Load BeadChips into the Hyb Chamber
within 1 hour.

NOTE
You can also prepare the Hyb Chambers later, during the 30 minute cool down.
4 After the 20 minute incubation, remove the AMP5 plate from the heat block and place it on the benchtop at room temperature for 30 minutes.

5 After the 30 minute cool down, pulse centrifuge the AMP5 plate to 280 × g. Remove the foil seal.

Prepare the Robot

For instructions on preparing the robot for use in a protocol, see the Infinium Assay Lab Setup and Procedures Guide.

Refer to the following figure throughout this protocol. Barcodes face to the right.

Figure 101 Placing Alignment Fixtures and AMP5 Plate onto Robot Bed

Verify AMP5 and BeadChips for Hybridization (LIMS only)(Optional)

1 In the Illumina LIMS left pane, click Infinium LCG Quad | Confirm BeadChips for Hyb.

2 Scan the barcode of the AMP5 plate.
3 Scan the barcodes of all the BeadChips you plan to hybridize with the plate. You can scan up to 24 BeadChips.

 NOTE
 Only scan BeadChips that have been accessioned into the system. The BeadChip type must match the type associated with this batch in Illumina LIMS.

4 Click Verify.

5 If the AMP5 plate and BeadChips are queued for hybridization, a blue confirmation message appears at the top of the window. Proceed to Load BeadChips.

 If the AMP5 plate is not queued for hybridization, if any of the BeadChips have not been accessioned into the system, or if any of the BeadChips are the wrong type, a red error message appears at the top of the window. The error message indicates the first incorrect barcode that it finds. Do not proceed with hybridization; complete the following steps instead:
 a Click the Reports tab in the upper-right corner.
 b In the left pane, click Tracking | Get Queue Status.
 c Scan the plate barcode and click Go.
 d If the plate is queued for another step, proceed with that step.

6 If 1 of the BeadChips is not accessioned into the system, accession it and then repeat the verification step.

7 If 1 of the BeadChips is not the right type for this batch, accession a BeadChip that is the right type and repeat the verification step.

8 When the verification is successful, proceed to Load BeadChips.

Load BeadChips

1 Remove all BeadChips from their plastic bags and mylar packages.

 CAUTION
 Hold the BeadChip by the ends with your thumb and forefinger (thumb at the barcode end). Do not hold the BeadChip by the sides near the sample inlets. Avoid contacting the beadstripe area and sample inlets.

2 Place BeadChips into the Robot BeadChip alignment fixtures with the barcode end aligned to the ridges on the fixture.
3 Stack the Robot BeadChip alignment fixtures and carry them to the robot.

4 At the robot PC, select **AMP5 Tasks | Hyb Multi-BC2 AMP5**.

5 Choose the appropriate BeadChip from the BeadChip Selection dialog box.

6 (Non-Illumina LIMS) In the Basic Run Parameters pane, change the value for **Number of AMP5 plates** and **Number of DNA samples per plate** to indicate the number of samples being processed.

 NOTE
 If you are using Illumina LIMS, you cannot change the number of DNA samples on this screen. However, the LIMS software processes the correct number of samples.

 The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the right.
7 Place the Robot BeadChip Alignment Fixtures onto the robot bed according to the bed map.

8 On the lab tracking form, record the plate position on the robot bed, BeadChip serial numbers, and BeadChip positions.

9 Pulse centrifuge the AMP5 plate at 280 \(\times \) g.

10 Place the AMP5 plate onto the robot bed according to the bed map. Remove the foil seal.

Start the Robot

1 (Non-Illumina LIMS) At the robot PC, click Run.

2 (Illumina LIMS) At the robot PC:
a Make sure that the **Use Barcodes** checkbox is selected.
b Click **Run** to start the process. Log in if prompted.
 The robot scans the barcodes on the BeadChips to confirm the correct BeadChips are loaded. When the correct BeadChips are confirmed, the robot pauses.

3 Place the Robot Tip Alignment Guide on top of the Robot BeadChip Alignment Fixture, with the Guide-F barcode on the left side. Push both the Robot Tip Alignment Guide and Robot BeadChip Alignment Fixture to the upper left corner in its section of the robot bed.

4 At the robot PC, click **OK** to confirm that you have placed the Robot Tip Alignment Guide on top of the Robot BeadChip alignment fixture. The robot scans the barcode on the Robot Tip Alignment Guide to confirm that the correct tip guide is being used.

 Figure 105 Robot Tip Alignment Guides on Robot Bed

The robot dispenses sample to the BeadChips.
The robot PC sounds an alert and opens a message when the process is complete.

5 Click **OK** in the message box.

6 Carefully remove the Robot BeadChip alignment fixtures from the robot bed and visually inspect all sections of the BeadChips. Make sure that DNA sample covers all the sections of each bead stripe. Record any sections that are not completely covered.
Set up BeadChip for Hybridization

1. Make sure the Illumina Hybridization Oven is set to 48°C.

 WARNING

 Keep Hyb Chambers at room temperature when you load the BeadChips. Do not place the Hyb Chambers in the Illumina Hybridization Oven before loading the BeadChips. If you heat the PB2 and then open the Hyb Chamber to add BeadChips, some of the PB2 evaporates, leading to a change in the osmolality of PB2 and an imbalance in the vapor pressure between PB2 and RA1.

 CAUTION

 Hold the BeadChip by the ends with your thumb and forefinger (thumb at the barcode end). Do not hold the BeadChip by the sides near the sample inlets. Avoid contacting the beadstripe area and sample inlets.

2. Carefully remove each BeadChip from the Robot BeadChip alignment fixtures when the robot finishes.

 CAUTION

 For optimal performance, take care to keep the Hyb Chamber inserts containing BeadChips steady and level when lifting or moving. Avoid shaking and always keep parallel to the lab bench. Do not hold by the sides near the sample inlets.

3. Calibrate the Illumina Hybridization Oven with the Full-Scale Plus digital thermometer supplied with your system.

4. Carefully place each BeadChip in a Hyb Chamber insert, orienting the barcode end so that it matches the barcode symbol on the insert.

Figure 106 Matching the Barcode End to the Insert Fixture
5 Load the Hyb Chamber inserts containing loaded BeadChips inside the Illumina Hyb Chamber. Position the barcode over the ridges indicated on the Hyb Chamber.

Figure 107 Placing Hyb Chamber Inserts into Hyb Chamber

6 Make sure that Hyb Chamber inserts are seated properly.

7 (Illumina LIMS) In the Illumina LIMS left pane click Infinium LCG Quad | Infinium Prepare Hyb Chamber.

8 Scan the barcodes of the PB2 tubes and scan the BeadChip barcodes. Click Verify, and then click Save.

9 Position the lid onto the Hyb Chamber by applying the backside of the lid first and then slowly bringing down the front end to avoid dislodging the Hyb Chamber inserts.

Figure 108 Seating Lid onto Hyb Chamber
10 Close the clamps on both sides of the Hyb Chamber so that the lid is secure and even on the base (no gaps).

It is best to close them in a kitty-corner fashion, closing first the top left clamp, then the bottom right, then the top right followed by the bottom left.

NOTE

Keep the Hyb Chamber steady and level when moving it or transferring it to the Illumina Hybridization Oven.

11 Place the Hyb Chamber in the 48°C Illumina Hybridization Oven with the clamps on the left and right sides of the oven and the Illumina logo facing you.

Figure 109 Hyb Chamber Correctly Placed in Hyb Oven
NOTE
If you are stacking multiple Hyb Chambers in the Illumina Hybridization Oven, fit the feet of the top Hyb Chamber into the matching indents on the lid of the Hyb Chamber below it. The fitted feet and lid hold the Hyb Chambers in place while they are rocking. You can stack up to 3 Hyb Chambers per row for a maximum of 6 Hyb Chambers total in the Illumina Hybridization Oven.

Figure 110 Two Hyb Chambers Correctly Placed in Hyb Oven
12 [Optional] Start the rocker, setting the speed to 5.

OVERNIGHT INCUBATION
Incubate at 48°C for at least 16 hours but no more than 24 hours.

13 Record the start and stop times on the lab tracking form.

14 Proceed to Wash BeadChips (Post-Amp) after the overnight incubation.

Resuspend XC4 Reagent for XStain BeadChip

Keep the XC4 in the bottle in which it was shipped until you are ready to use it. In preparation for the XStain protocol, follow these steps to resuspend the XC4 reagent.

1 Add 330 ml 100% EtOH to the XC4 bottle, for a final volume of 350 ml.
 Each XC4 bottle has enough solution to process up to 24 BeadChips.

2 Shake the XC4 bottle vigorously to ensure complete resuspension. After it is resuspended, use XC4 at room temperature.
 You can store it at 2° to 8°C for 2 weeks if unused.
Wash the Robot Tip Alignment Guide

For optimal performance, wash and dry the Robot Tip Alignment Guides after every run.

1. Soak the tip guide inserts in a 1% aqueous Alconox solution (1 part Alconox to 99 parts water) using a 400 ml Pyrex beaker for 5 minutes.

 NOTE
 Do not use bleach or ethanol to clean the tip guide inserts.

2. After the 5 minute soak in the 1% Alconox solution, thoroughly rinse the tip guides with DiH$_2$O at least 3 times to remove any residual detergent.

3. Dry the Robot Tip Alignment Guide using a Kimwipe or lint-free paper towels. Use a laboratory air gun to dry. Be sure to inspect the tip guide channels, including the top and bottom. Tip guides must be dry and free of any residual contaminates before next use.
Wash BeadChips (Post-Amp)

In this procedure, the BeadChips are prepared for the XStain process. Remove the cover seals from the BeadChips and wash the BeadChips in 2 separate PB1 reagent washes. Then, assemble the BeadChips into flow-through chambers under the PB1 buffer.

Figure 112 Washing BeadChip

Estimated Time
- 20 minutes for 4 BeadChips
- 30 minutes for 8 BeadChips
Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB1</td>
<td>550 ml for 1 to 8 BeadChips
700 ml for 9 to 16 BeadChips
850 ml for 17 to 24 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td>Multisample BeadChip alignment fixture</td>
<td>1 (per 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Te-Flow LCG flow-through chambers, with black frames, LCG spacers, LCG glass back plates, and clamps</td>
<td>1 (per BeadChip)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Wash dish</td>
<td>2 (up to 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
<tr>
<td>Wash rack</td>
<td>1 (up to 8 BeadChips)</td>
<td></td>
<td>Illumina</td>
</tr>
</tbody>
</table>

CAUTION
Pour only the recommended reagent volume needed for the suggested number of samples listed in the Consumables table of each section. Some reagents are used later in the protocol.

WARNING
This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.
Preparation

1. Remove each Hyb Chamber from the Illumina Hybridization Oven. Let cool on the benchtop for 30 minutes before opening.

2. Have ready on the lab bench:
 a. Two wash dishes:
 — Containing 200 ml PB1, and labeled as such
 b. Multi-Sample BeadChip Alignment Fixture
 — Using a graduated cylinder, fill with 150 ml PB1
 c. Te-Flow LCG flow-through chamber components:
 — Black frames
 — LCG spacers (separated for ease of handling)
 — Clean LCG glass back plates as directed in the Infinium Lab Setup and Procedures Guide.
 — Clamps

3. On the lab tracking form, record:
 - Date/Time
 - Operator
 - PB1 bottle barcode
 - Robot

 NOTE
 To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Verify Reagents and BeadChips for Washing (LIMS only)

1. In the Illumina LIMS left pane, click **Infinium LCG Quad | Wash BeadChip**.

2. Scan the barcodes of the PB1.

3. Scan the BeadChip barcodes.

4. Click **Verify** and then click **Save**.
5 If the reagents are correct and the BeadChips are queued for washing, a blue confirmation message appears at the top of the window. Proceed to Steps to Wash BeadChip.

6 If any of the reagents are invalid, check the reagent type before rescanning. The reagent name (eg, PB1) appears at the end of the barcode. Make sure to scan the correct reagent into each box.

7 If any of the BeadChips are not queued for washing, a red error message appears at the top of the window. The error message indicates the first incorrect barcode that it finds. Do not proceed with washing. Instead, follow these steps to troubleshoot the problem:
 a Click the Reports tab in the upper-right corner.
 b In the left pane, click Tracking Reports | Get Queue Status.
 c Scan the BeadChip barcode that appeared in the error message and click Go.
 d Note what step the BeadChip is queued for, and proceed with that step.

For information about how to use Illumina LIMS, see the Illumina LIMS User Guide.

Steps to Wash BeadChips

1 Attach the wire handle to the rack and submerge the wash rack in the wash dish containing 200 ml PB1.

Figure 113 Wash Rack in Wash Dish Containing PB1
2 Remove the Hyb Chamber inserts from the Hyb Chambers.
3 Remove each BeadChip from the Hyb Chamber insert.
4 Remove the cover seal from each BeadChip.

 NOTE
 To make sure that no solution splatters on you, Illumina recommends removing the cover seal over an absorbent cloth or paper towels, preferably in a hood.

 a Using powder-free gloved hands, hold the BeadChip securely and by the edges in one hand. Avoid contact with the sample inlets. Make sure that the barcode is facing up and closest to you, and that the top side of the BeadChip is angled slightly away from you.

 b Remove the entire seal in a single, continuous motion. Start with a corner on the barcode end and pull with a continuous upward motion away from you and towards the opposite corner on the top side of the BeadChip.

 Figure 114 Removing the Cover Seal

 c Discard the cover seal.

 CAUTION
 Do not touch the arrays!

5 Immediately and carefully slide each BeadChip into the wash rack, making sure that the BeadChip is submerged in the PB1.
6 Repeat steps 4 through 5 until all BeadChips (a maximum of 8) are transferred to the submerged wash rack.

7 After all BeadChips are in the wash rack, move the wash rack up and down for 1 minute, breaking the surface of the PB1 with gentle, slow agitation.

8 Move the wash rack to the other wash dish containing clean PB1. Make sure the BeadChips are submerged.

9 Move the wash rack up and down for 1 minute, breaking the surface of the PB1 with gentle, slow agitation.

10 When you remove the BeadChips from the wash rack, inspect them for remaining residue.

NOTE
Residue that can adversely affect results is sometimes left on BeadChips after seals are removed. If there is residue left on the BeadChips after the second PB1 wash, use a 200 μl pipette tip for each BeadChip and slowly and carefully scrape off the residues outward (away) from the bead-sections under PB1. Use a new pipette tip for each BeadChip. Then, continue with the protocol.

11 For each additional set of 8 BeadChips:
a. Assemble the flow-through chambers for the first 8 BeadChips, as described in

b. Repeat the wash steps in this section to wash the next set of 8 BeadChips.

Assemble Flow-Through Chambers

NOTE

Confirm that you are using the correct Infinium LCG glass back plates and spacers before assembling the flow-through chambers. Refer to the following image for the correct flow-through chamber components.

Figure 116 Correct LCG Back Plates and Spacers

1. If you have not done so, fill the BeadChip alignment fixture with 150 ml PB1. If you plan to process more than 4 BeadChips, this 150 ml of PB1 can be reused for an additional set of 4 BeadChips. Use 150 ml of fresh PB1 for every additional set of 8 BeadChips.

2. For each BeadChip to be processed, place a black frame into the BeadChip alignment fixture prefilled with PB1.
3. Place each BeadChip to be processed into a black frame, aligning its barcode with the ridges stamped onto the alignment fixture.

NOTE
Inspect the surface of each BeadChip for residue left by the seal. Use a pipette tip to remove any residue under buffer and be careful not to scratch the bead area.
4 Place a clear LCG spacer onto the top of each BeadChip. Use the alignment fixture grooves to guide the spacers into proper position.

NOTE
Be sure to use the clear plastic spacers, not the white ones.

Figure 119 Placing Clear Plastic Spacer onto BeadChip

5 Place the alignment bar onto the alignment fixture.
The groove in the alignment bar fits over the tab on the alignment fixture.
6 Place a clean LCG glass back plate on top of the clear spacer covering each BeadChip. The plate reservoir is at the barcode end of the BeadChip, facing inward to create a reservoir against the BeadChip surface.
Attach the metal clamps to the flow-through chambers as follows:

- Gently push the glass back plate against the alignment bar with one finger.
- Place the first metal clamp around the flow-through chamber so that the clamp is approximately 5 mm from the top edge.
- Place the second metal clamp around the flow-through chamber at the barcode end, approximately 5 mm from the reagent reservoir.

Figure 122 Securing Flow-Through Chamber Assembly with Metal Clamps

8 Using scissors, trim the ends of the clear plastic spacers from the flow-through chamber assembly. Slip scissors up over the barcode to trim the other end.
9 **Immediately** wash the Hyb Chamber reservoirs with DiH$_2$O and scrub them with a small cleaning brush, ensuring that no PB2 remains in the Hyb Chamber reservoir.

CAUTION

It is important to wash the Hyb Chamber reservoirs immediately and thoroughly to make sure that no traces of PB2 remain in the wells.

10 Discard unused reagents in accordance with facility standards.

11 Proceed to *Extend and Stain (XStain) BeadChip (Post-Amp)*.

CAUTION

Place all assembled flow-through chambers on the lab bench in a horizontal position while you perform the preparation steps for the XStain BeadChip. Do not place the flow-through chambers in the chamber rack until the preparation is complete.
Extend and Stain (XStain) BeadChip (Post-Amp)

In this process, you use RA1 reagent to wash away unhybridized and nonspecifically hybridized DNA sample. LX1 and LX2 are added to condition the BeadChip surface for the extension reaction. Dispense EML reagent into the flow-through chambers to extend the primers hybridized to DNA on the BeadChip. This reaction incorporates labeled nucleotides into the extended primers. 95% formamide/1 mM EDTA is added to remove the hybridized DNA. After neutralization using the XC3 reagent, the labeled extended primers undergo a multilayer staining process on the chamber rack. Next, you disassemble the flow-through chambers and wash the BeadChips in the PB1 reagent, coat them with XC4, and then dry them.

Figure 124 Extending and Staining BeadChip

Estimated Time

Robot time:
- ~2 hours and 45 minutes for 8 BeadChips
- ~3 hours for 16 BeadChips
- ~3 hours and 10 minutes for 24 BeadChips

Dry time: 55 minutes
Consumables

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA1</td>
<td>10 ml for 1–8 BeadChips</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>20 ml for 9–16 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 ml for 17–24 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LX1</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>LX2</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>EML</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>XC3</td>
<td>50 ml for 1–8 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>100 ml for 9–16 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 ml for 17–24 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SML</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>(Make sure that all SML tubes indicate the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>same stain temperature on the label)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td>2 tubes (per 8 BeadChips)</td>
<td>-25°C to -15°C</td>
<td>Illumina</td>
</tr>
<tr>
<td>PB1</td>
<td>310 ml for 1–8 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>285 ml for 9–24 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XC4</td>
<td>310 ml for 1–8 BeadChips</td>
<td>Room temperature</td>
<td>Illumina</td>
</tr>
<tr>
<td></td>
<td>285 ml for 9–24 BeadChips</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparation

- **RA1 is shipped frozen.** Gradually warm the reagent to room temperature, preferably in a 20°C to 25°C water bath. Gently mix to dissolve any crystals that might be present.

1. Place all reagent tubes in a rack in the order in which they are used. If frozen, allow them to thaw to room temperature, and then gently invert the reagent tubes at least 10 times to mix contents.

Automated Protocol

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
<th>Supplied By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alconox Powder Detergent</td>
<td>As needed</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>EtOH</td>
<td>As needed</td>
<td>Room temperature</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>95% formamide/1 mM EDTA</td>
<td>15 ml for 1–8 BeadChips</td>
<td>-25°C to -15°C</td>
<td>General lab supplier</td>
</tr>
<tr>
<td></td>
<td>17 ml for 9–16 BeadChips</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25 ml for 17–24 BeadChips</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAUTION

Pour out only the recommended reagent volume needed for the suggested number of BeadChips listed in the consumables table of each section. Some of the reagents are used later in the protocol.

NOTE

It is important to use fresh RA1 for each protocol step in the assay where it is required. RA1 that has been stored properly and has not been dispensed for use in either the XStain or Resuspension step is considered fresh RA1. After RA1 has been poured out into a reservoir and exposed to room temperature air for extended periods of time, it is no longer fresh.

WARNING

This protocol uses an aliphatic amide that is a probable reproductive toxin. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. For more information, consult the material data safety sheet for this assay at www.illumina.com/msds. Dispose of containers and any unused contents in accordance with the governmental safety standards for your region.
On the lab tracking form, record:

- Date/Time
- Operator
- Robot
- RA1 barcode
- XC3 barcode
- LX1 barcodes
- LX2 barcodes
- EML barcodes
- SML barcodes
• ATM barcodes
• PB1 barcode
• XC4 barcodes

NOTE
To record information about your assay such as operator information, start and stop times, and barcodes, use the lab tracking form provided at www.illumina.com/documentation. This form can be filled out and saved online, or printed and filled in by hand.

Set Up Chamber Rack

1. Make sure that the water circulator reservoir is filled with water to the appropriate level. See the VWR Operator Manual, VWR part # 110-229.

2. Turn on the water circulator and set it to a temperature that brings the chamber rack to 44°C at equilibrium.
 This temperature can vary depending on facility ambient conditions.
3 Confirm the temperature using the temperature probe for the chamber rack. The temperature displayed on the water circulator LCD screen might differ from the actual temperature on the chamber rack.

4 Make sure that you remove bubbles trapped in the chamber rack *each time* you run this process. Follow instructions in the *Te-Flow (Tecan Flow-Through Module) Operating Manual*, Tecan Doc ID 391584.

5 Use the Illumina Temperature Probe in several locations to make sure that the chamber rack is at 44°C. Make sure that all locations are at 44°C ± 0.5°C.
NOTE
Do not leave the temperature probe in the first 3 rows of the chamber rack. Reserve this space for BeadChips.

Figure 127 Illumina Temperature Probe and Temperature Probe in Chamber Rack

6 For accurate temperature measurement, make sure that the Illumina Temperature Probe is touching the base of the chamber rack.
Prepare Robot

For instructions on preparing the robot for use in a protocol, see the *Infinium Assay Lab Setup and Procedures Guide*. Refer to the following figure throughout this protocol.

Figure 128 Tecan 8-Tip Robot (XStain BeadChip Setup)

A LX1
B LX2
C EML
D SML
E ATM
F XC3 in Full Reservoir
G RA1 in Half Reservoir
H 95% Formamide / 1 mM EDTA in Quarter Reservoir
I 24 BeadChips in Chamber Rack
J Temperature Probe

Single-Base Extension and Stain

CAUTION
The remaining steps must be performed without interruption.

1. Slide the chamber rack into column 36 on the robot bed. Make sure that it is seated properly.

2. At the robot PC, select **XStain Tasks | XStain LCG BeadChip**.
3. In the Basic Run Parameters pane, enter the number of BeadChips. You can process up to 24 BeadChips in the XStain BeadChip process. The robot PC updates the Required Run Items and the bed map to show the correct position of items on the robot bed. All barcodes must face to the left.

Figure 129 XStain LCG BeadChip Screen

4. If you plan on imaging the BeadChip immediately after the staining process, turn on the iScan or HiScan now to allow the lasers to stabilize.

5. Place a quarter reservoir in the reservoir frame, according to the robot bed map, and add 95% formamide/1 mM EDTA as follows:
 - 15 ml to process 8 BeadChips
 - 17 ml to process 16 BeadChips
 - 25 ml to process 24 BeadChips

6. Place a half reservoir in the reservoir frame, according to the robot bed map, and add RA1 in the following volumes:
• 10 ml to process 8 BeadChips
• 20 ml to process 16 BeadChips
• 30 ml to process 24 BeadChips

7 Place a full reservoir in the reservoir frame, according to the robot bed map, and add XC3 in the following volumes:
• 50 ml to process 8 BeadChips
• 100 ml to process 16 BeadChips
• 150 ml to process 24 BeadChips

8 Place each reagent tube (LX1, LX2, EML, SML, ATM) in the robot tube rack according to the bed map, and remove their caps.

9 Make sure that all items are placed properly on the robot bed, that all caps and seals have been removed, and that all the barcodes face to the right.

Start Robot

1 (Non-Illumina LIMS) At the robot PC, click Run.

2 (Illumina LIMS) At the robot PC:
 a Make sure that the Use Barcodes checkbox is selected.
 b In the Basic Run Parameters pane, change the value for Number of BeadChips to indicate the number of BeadChips being processed.
 c Click Run to start the process. Log in if prompted.

3 When prompted, enter the stain temperature indicated on the SML tube.

 NOTE
 If you are using Illumina LIMS, you are not prompted to enter the staining temperature. Illumina LIMS automatically sets the correct temperature based on the SML tube barcodes.

4 When the prompt appears, wait for the Chamber Rack to reach 44°C. Do not load the BeadChips or click OK yet.

5 When the temperature probe registers 44°C, click OK.

6 When prompted, load the BeadChips and click OK.

7 Place each assembled flow-through chamber in the first row of the chamber rack. Refer to the robot bed map for the correct layout.
8 Make sure that each flow-through chamber is properly seated on its rack to allow adequate heat exchange between the rack and the chamber.

9 On the lab tracking form, record the chamber rack position associated with each BeadChip.

10 Click OK. A series of reactions begins, each with a wait time. Message boxes on the robot PC tell you which reaction is occurring and how long the wait time is.

<table>
<thead>
<tr>
<th>#</th>
<th>Reagent</th>
<th>Wait Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RA1</td>
<td>3 minutes</td>
</tr>
<tr>
<td>2</td>
<td>LX1</td>
<td>10 minutes</td>
</tr>
<tr>
<td>3</td>
<td>LX2</td>
<td>10 minutes</td>
</tr>
<tr>
<td>4</td>
<td>EML</td>
<td>15 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Formamide/EDTA</td>
<td>7 minutes</td>
</tr>
<tr>
<td>6</td>
<td>XC3</td>
<td>2 minutes</td>
</tr>
<tr>
<td>7</td>
<td>SML</td>
<td>10 minutes</td>
</tr>
<tr>
<td>8</td>
<td>XC3</td>
<td>7 minutes</td>
</tr>
<tr>
<td>9</td>
<td>ATM</td>
<td>10 minutes</td>
</tr>
<tr>
<td>10</td>
<td>XC3</td>
<td>7 minutes</td>
</tr>
<tr>
<td>11</td>
<td>SML</td>
<td>10 minutes</td>
</tr>
<tr>
<td>12</td>
<td>XC3</td>
<td>7 minutes</td>
</tr>
<tr>
<td>13</td>
<td>ATM</td>
<td>10 minutes</td>
</tr>
<tr>
<td>14</td>
<td>XC3</td>
<td>7 minutes</td>
</tr>
<tr>
<td>15</td>
<td>SML</td>
<td>10 minutes</td>
</tr>
<tr>
<td>16</td>
<td>XC3</td>
<td>7 minutes</td>
</tr>
</tbody>
</table>

Table 8 List of Reactions
11 When prompted, remove the BeadChips from the chamber rack immediately and place them horizontally on the lab bench at room temperature. Click **OK** in the message box.

12 The robot PC sounds an alert and opens a message when the process is complete. Click **OK** to finish the process.

Verify Reagents and BeadChips for Coating (LIMS only)

1 In the Illumina LIMS left pane, click **Infinium LCG Quad | Coat BC2**.

2 Scan the barcodes of the PB1.

3 Scan the barcodes of the XC4.

4 Scan the BeadChip barcodes.

5 Click **Verify** and then click **Save**.

6 If the reagents are correct and the BeadChips are queued for coating, a blue confirmation message appears at the top of the window. Proceed to **Wash and Coat 8 BeadChips**.

7 If any of the reagents are invalid, check the reagent type before rescanning. The reagent name (eg, PB1) appears at the end of the barcode. Make sure to scan the correct reagent into each box.

8 If any of the BeadChips are not queued for coating, a red error message appears at the top of the window. The error message indicates the first incorrect barcode that it finds. Do **not** proceed with coating. Instead, follow these steps to troubleshoot the problem:
 a Click the Reports tab in the upper-right corner.
 b In the left pane, click **Tracking Reports | Get Queue Status**.
 c Scan the BeadChip barcode that appeared in the error message and click **Go**.
 d Note what step the BeadChip is queued for, and proceed with that step.

For information about how to use Illumina LIMS, see the **Illumina LIMS User Guide**.

Wash and Coat 8 BeadChips

Before starting the Wash and Coat process, read these important notes:
- Take the utmost care to minimize the chance of lint or dust entering the wash dishes, which could transfer to the BeadChips. Place wash dish covers on wash dishes when
stored or not in use. Clean wash dishes with low-pressure air to remove particulates before use.

- In preparation for XC4 BeadChip coating, wash the tube racks and wash dishes thoroughly before and after use. Rinse with DI water. Immediately following wash, place racks and wash dishes upside down on a wash rack to dry.
- Place Kimwipes in 3 layers on the lab bench. Place a tube rack on top of these Kimwipe layers. Do not place on absorbent lab pads. You will place the staining rack containing BeadChips on this tube rack after removing it from the XC4 wash dish.
- Prepare an additional clean tube rack that fits the internal dimensions of vacuum desiccator for removal of the BeadChips. Allow one rack per 8 BeadChips. No Kimwipes are required under this tube rack.

Equipment Needed

Place the following items on the bench:
- 1 staining rack
- 1 vacuum desiccator
- 1 tube rack
- Self-locking tweezers
- Large Kimwipes
- Vacuum hose

Steps

1. Set up 2 top-loading wash dishes, labeled "PB1" and "XC4".
2. To indicate the fill volume before filling wash dishes with PB1 and XC4, pour 310 ml water into the wash dishes and mark the water level on the side. Empty the water from the wash dish. Marking the level enables you to pour reagent directly from the PB1 and XC4 bottles into the wash dishes, minimizing contaminant transfer from labware to wash dishes.
3 Pour 310 ml PB1 into the wash dish labeled “PB1.”

4 Submerge the unloaded staining rack into the wash dish with the locking arms and tab *facing towards* you. This orientation makes it easier and safer to remove the BeadChips. Let the staining rack sit in the wash dish. You will use it to carry the BeadChips after disassembling the flow-through chambers.
CAUTION
If the staining rack handle is not correctly oriented, the BeadChips can be damaged when you remove the staining rack handle before removing the BeadChips.

5 One at a time, disassemble each flow-through chamber:
 a Use the dismantling tool to remove the 2 metal clamps.

 CAUTION
 It is important to use the dismantling tool to avoid chipping the glass back plates.
Figure 132 Removing the Metal Clamps from Flow-Through Chamber

b Remove the glass back plate.

c Set the glass back plate aside. When you finish the XStain LCG BeadChip protocol, clean the glass back plates as described in the *Infinium Lab Setup and Procedures Guide*.

d Remove the spacer. To avoid damaging the stripes on the BeadChip, pull the spacer out so that the long sides slide along the sides of the BeadChip.

e Remove the BeadChip.

CAUTION
Do not touch the face of the BeadChips. Handle them by the barcode end or by the edges.

6 Place the BeadChips in the staining rack while it is submerged in PB1. Put 4 BeadChips above the staining rack handle and 4 below the handle. Make sure that the BeadChip barcodes *face away* from you and that the locking arms on the handle *face towards* you.

 If necessary, briefly lift the staining rack out of the wash dish to seat the BeadChip. Replace it immediately after inserting each BeadChip.

7 Make sure that the BeadChips are submerged.

CAUTION
Do not allow the BeadChips to dry. Submerge each BeadChip in the wash dish as soon as possible.

8 Slowly move the staining rack up and down 10 times, breaking the surface of the reagent.
NOTE
If the top edges of the BeadChips begin to touch during either PB1 or XC4 washes, gently move the staining rack back and forth to separate the slides. It is important for the solution to circulate freely between all BeadChips.

Figure 133 Washing BeadChips in PB1

9 Allow the BeadChips to soak for an additional 5 minutes.

CAUTION
Do not leave the BeadChips in the PB1 for more than 30 minutes.

10 Shake the XC4 bottle vigorously to ensure complete resuspension. If necessary, vortex until dissolved.

11 Pour 310 ml XC4 into the dish labeled “XC4,” and cover the dish to prevent any lint or dust from falling into the solution.

CAUTION
Do not let the XC4 sit for longer than 10 minutes.

12 Remove the staining rack from the PB1 dish and place it directly into the wash dish containing XC4. For proper handling and coating, the barcode labels on the BeadChips must face away from you; the locking arms on the handle must face towards you.
13 Slowly move the staining rack up and down 10 times, breaking the surface of the reagent.

NOTE
If the top edges of the BeadChips begin to touch during either PB1 or XC4 washes, gently move the staining rack back and forth to separate the slides. It is important for the solution to circulate freely between all BeadChips.

14 Allow the BeadChips to soak for an additional 5 minutes.

CAUTION
Use XC4 only one time. To process subsequent BeadChips, use a new, clean wash dish with fresh XC4.

15 Prepare 1 additional tube rack per 8 BeadChips (Illumina-provided from VWR catalog # 60916-748) that fits the internal dimensions of vacuum desiccator.

16 Remove the staining rack in one smooth, rapid motion and place it directly on the prepared tube rack, making sure the barcodes *face up*, and the locking arms and tabs *face down*.

Figure 134 Moving BeadChips from PB1 to XC4

![Figure 134](Image)
To ensure uniform coating, place the staining rack on the center of the tube rack, avoiding the raised edges.

17 For each of the top 4 BeadChips, working top to bottom:
a Continuing to hold the staining rack handle, carefully grip each BeadChip at its barcode end with self-locking tweezers.

NOTE
The XC4 coat is slippery and makes the BeadChips difficult to hold. The self-locking tweezers grip the BeadChip firmly and help prevent damage.

b Place each BeadChip on a tube rack with the barcode *facing up and towards* you.

Figure 137 BeadChips on Tube Rack

18 Holding the top of the staining rack in position, gently remove the staining rack handle by grasping the handle between the thumb and forefinger. Push up the tab with your thumb and push the handle away from you (unlocking the handle), then pull up the handle and remove.
19 Remove the remaining BeadChips to the tube rack, with 6 BeadChips on top of the rack and 2 BeadChips on the bottom. Make sure that the barcode ends are towards you, and the BeadChips are completely horizontal.

CAUTION
To prevent wicking and uneven drying, do not allow the BeadChips to rest on the edge of the tube rack or to touch each other while drying.

20 Place the tube rack in the vacuum desiccator. Each desiccator can hold 1 tube rack (8 BeadChips).

CAUTION
Make sure that the vacuum valve is seated tightly and securely.

21 Remove the red plug from the three-way valve before applying vacuum pressure.

22 Start the vacuum, using at least 675 mm Hg (0.9 bar).
23 To make sure that the desiccator is properly sealed, gently lift the lid of the vacuum desiccator. It should not lift off the desiccator base.

Figure 139 Testing Vacuum Seal

24 Dry under vacuum for 50–55 minutes.
 Drying times can vary according to room temperature and humidity.

25 Release the vacuum by turning the handle very slowly.

WARNING

Make sure that air enters the desiccator very slowly to avoid disturbing the contents. Improper use of the vacuum desiccator can result in damage to the BeadChips, especially if you remove the valve plug while a vacuum is applied. For detailed vacuum desiccator instructions, see the documentation included with the desiccator.

26 Store the desiccator with the red valve plug in the 3-way valve of the desiccator to stop accumulation of dust and lint within the valve port.

27 Touch the borders of the BeadChips (do not touch the stripes) to make sure that the etched, barcoded sides are dry to the touch.
28 If the underside feels tacky, manually clean the underside of the BeadChip to remove any excess XC4. The bottom 2 BeadChips are most likely to have some excess.
 a Hold the BeadChip at a downward angle to prevent excess EtOH from dripping from the wipe onto the stripes.
 b Wipe along the underside of the BeadChip 5 or 6 times, until the surface is clean and smooth.

 CAUTION
 Do not touch the stripes with the wipe or allow EtOH to drip onto the stripes.

29 Clean the glass back plates. For instructions, see the Infinium Lab Setup and Procedures Guide.

30 Discard unused reagents in accordance with facility standards.

31 Do either of the following:
 • Proceed to Image BeadChip (Post-Amp).
 • Store the BeadChips in the Illumina BeadChip Slide Storage Box inside a vacuum desiccator at room temperature. Be sure to image the BeadChips within 72 hours.
Follow the instructions in the *iScan System User Guide* or *HiScan System User Guide* to scan your BeadChips. Use the appropriate scan setting for your BeadChip, as outlined in the following table:

<table>
<thead>
<tr>
<th>BeadChip</th>
<th>Scan Setting Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>HumanOmni5-4</td>
<td>Infinium LCG</td>
</tr>
</tbody>
</table>
The Illumina GenomeStudio Genotyping Module, included with your Illumina Infinium Assay system, is an application for extracting genotyping data from intensity data files (*.idat files) collected from systems such as the Illumina HiScan System.

For feature descriptions and instructions on using the GenomeStudio platform to visualize and analyze genotyping data, see the GenomeStudio Framework User Guide and the GenomeStudio User Guide or Online Help.
Index

A
arrays 9
AutoLoader features 15

B
BeadChip
alignment fixtures 149-150
description 9
imaging 8
single-base extension 7
washing 7
Xstain, auto protocol 179
Xstain, manual protocol 79, 81

C
copy number variation 16
customer support 199

D
data analysis 11, 16, 30, 94, 196
differential analysis 16, 94, 196
DNA 102
 amplification bias 4
 amplifying 4
 annealing 6
captured and used as a template 7
denaturing 4
fragmenting 5
hybridizing 6
incubating 4, 6
mapping samples to BeadChips 11
neutralizing 4
precipitating 5
preparing for amplification 4
preparing for staining, extension 7
quantitating dsDNA 23
resuspending 6
tracking samples 11
wasting away 7
documentation 199
dsDNA 23

E
equipment
 automated protocol
 Illumina-supplied 99
 user-supplied 99
 manual protocol
 Illumina-supplied 21
 user-supplied 21
experienced user cards 11

F
fluorosphone 8
FLUOTRAC plate 27

G
gene analysis 16, 94, 196
GenomeStudio 16, 94, 196
genotype calling for the sample 7

H
help, technical 199
HiScan 15-16, 94, 196
HiScan System 15, 180

I
Infinium Assay
 overview 2
integrated informatics 16, 94, 196
intensity data files 16
iScan System 15, 180

L
lab setup and procedures 10
lab tracking form (LTF) 32

M
materials
automated protocol
 Illumina-supplied 100
 user-supplied 21, 100
manual protocol
 Illumina-supplied 22
multiplex 2

P
PicoGreen DNA quantitation kit 23, 102

Q
quantitate dsDNA 23, 102

R
reagents
 manual protocol
 Illumina-supplied 22
Required Run Items 132, 151, 180
RNA 23
robot
 BeadChip alignment fixtures 149-150
 bed map update 132
 dispensing sample 153
 preparing 125, 130, 138, 149, 179
 Required Run Items 132, 151, 180
 resuspend setup 139
 scanning the barcode 153
 Tip Alignment Guide 144, 153
 tube rack 181
 XStain BeadChips setup 179
Robot Tip Alignment Guide 144, 159

S
Sample QDNA 26, 105
Sample QDNA plate 24, 28-29, 103
sample sheet 11
SNPs
 number per sample 2
Standard DNA plate 24, 27, 103
Standard QDNA 26, 105
Standard QDNA plate 24, 27, 29, 103

T
Tecan Freedom Evo 14
Tecan GenePaint 14
Tecan Genesis 14
technical assistance 199
Tip Alignment Guide 144, 153

X
XStain BeadChips
 auto protocol 179
 manual protocol 79, 81
Technical Assistance

For technical assistance, contact Illumina Technical Support.

Table 10 Illumina General Contact Information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Website</td>
<td>www.illumina.com</td>
</tr>
<tr>
<td>Email</td>
<td>techsupport@illumina.com</td>
</tr>
</tbody>
</table>

Table 11 Illumina Customer Support Telephone Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Contact Number</th>
<th>Region</th>
<th>Contact Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>1.800.809.4566</td>
<td>Italy</td>
<td>800.874909</td>
</tr>
<tr>
<td>Australia</td>
<td>1.800.775.688</td>
<td>Netherlands</td>
<td>0800.0223859</td>
</tr>
<tr>
<td>Austria</td>
<td>0800.296575</td>
<td>New Zealand</td>
<td>0800.451.650</td>
</tr>
<tr>
<td>Belgium</td>
<td>0800.81102</td>
<td>Norway</td>
<td>800.16836</td>
</tr>
<tr>
<td>Denmark</td>
<td>80882346</td>
<td>Spain</td>
<td>900.812168</td>
</tr>
<tr>
<td>Finland</td>
<td>0800.918363</td>
<td>Sweden</td>
<td>020790181</td>
</tr>
<tr>
<td>France</td>
<td>0800.911850</td>
<td>Switzerland</td>
<td>0800.563118</td>
</tr>
<tr>
<td>Germany</td>
<td>0800.180.8994</td>
<td>United Kingdom</td>
<td>0800.917.0041</td>
</tr>
<tr>
<td>Ireland</td>
<td>1.800.812949</td>
<td>Other countries</td>
<td>+44.1799.534000</td>
</tr>
</tbody>
</table>

Safety Data Sheets

Safety data sheets (SDSs) are available on the Illumina website at support.illumina.com/sds.html.

Product Documentation

Product documentation in PDF is available for download from the Illumina website. Go to support.illumina.com, select a product, then select Documentation & Literature.