This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY, AND WILL VOID ANY WARRANTY APPLICABLE TO THE PRODUCT(S). ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE).

© 2020 Illumina, Inc. All rights reserved.

All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html.
Revision History

<table>
<thead>
<tr>
<th>Document #</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000000109376 v00</td>
<td>March 2020</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Table of Contents

System Overview .. 1
Additional Resources ... 1
Instrument Hardware ... 2
Integrated Software ... 4
Process Management ... 5
Sequencing Protocol Diagram .. 6
How Sequencing Works ... 6
System Configuration ... 9
User Account Requirements ... 9
Configure BaseSpace Sequence Hub and Proactive Support 9
Specify the Default Output Folder Location .. 10
Import Custom Reference Genomes .. 13
Configure Run Mode ... 13
Instrument Customization .. 14
Consumables & Equipment ... 15
Sequencing Consumables ... 15
Ancillary Consumables ... 18
Ancillary Equipment ... 19
Protocol ... 21
Sequencing Considerations ... 21
Plan a Sequencing Run in BaseSpace Sequence Hub .. 22
Thaw the Bagged Cartridge ... 26
Prepare the Flow Cell and Libraries ... 27
Load Consumables Into the Cartridge ... 29
Initiating a Sequencing Run ... 31
Sequencing Output .. 36
Real-Time Analysis Overview ... 36
Real-Time Analysis Workflow ... 38
Sequencing Output Files .. 42
DRAGEN Secondary Analysis Output Files ... 42
DRAGEN Secondary Analysis Output Folder Structure ... 46
Maintenance .. 49
Clear Hard Drive Space .. 49
Software Updates ... 49
DRAGEN Pipeline and License Updates .. 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace the Air Filter</td>
<td>51</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>53</td>
</tr>
<tr>
<td>Error Message Resolution</td>
<td>53</td>
</tr>
<tr>
<td>Return Consumables to Storage</td>
<td>53</td>
</tr>
<tr>
<td>Cancel a Run</td>
<td>54</td>
</tr>
<tr>
<td>Requeue a Run</td>
<td>54</td>
</tr>
<tr>
<td>Power Cycle the Instrument</td>
<td>55</td>
</tr>
<tr>
<td>Restore to Factory Settings</td>
<td>56</td>
</tr>
<tr>
<td>Capture Installed Image</td>
<td>56</td>
</tr>
<tr>
<td>Restore Captured Image</td>
<td>56</td>
</tr>
<tr>
<td>Resources & References</td>
<td>57</td>
</tr>
<tr>
<td>Sample Sheet v2 Settings</td>
<td>57</td>
</tr>
<tr>
<td>Index</td>
<td>63</td>
</tr>
<tr>
<td>Technical Assistance</td>
<td>67</td>
</tr>
</tbody>
</table>
System Overview

The Illumina® NextSeq™ 2000 Sequencing System provides a targeted approach to NGS\(^1\). This applications-focused system packages Illumina sequencing technology into a cost-effective desktop instrument that offers the following features:

- **Accessibility and reliability**—The NextSeq 2000 has local DRAGEN analysis and onboard denature and dilution. An imaging module is built into the system and fluidics components are built into the consumable, simplifying instrument maintenance.
- **Single-step consumable loading**—A single-use cartridge is prefilled with all reagents required for a run. Library and flow cell load directly into the cartridge, which is then loaded onto the instrument. Integrated identification enables accurate tracking.
- **NextSeq 2000 software**—A suite of integrated software controls instrument operations, processes images, and generates base calls.
 - **Cloud mode**—Plan your run with Instrument Run Setup on BaseSpace Sequence Hub. The selected analysis workflow is initiated automatically within the cloud. Run data and analysis results are also provided in the cloud.
 - **Hybrid mode**—Plan your run with Instrument Run Setup on BaseSpace Sequence Hub. The selected analysis workflow is then initiated through the on-instrument DRAGEN.
 - **Local mode**—Plan your run with a sample sheet v2 file format locally. The selected analysis workflow is initiated automatically through the on-instrument DRAGEN or manually through BaseSpace Sequence Hub apps after run completion when Proactive, Run Monitoring and Storage is selected.
 - **Standalone mode**—Plan your run without a sample sheet.

This section provides an overview of the system, including information on hardware, software, and data analysis. It also assembles key concepts and terminology that are embedded throughout the documentation. For detailed specifications, data sheets, applications, and related products, see the NextSeq 2000 Sequencing System product page on the Illumina website.

Additional Resources

The NextSeq 2000 Sequencing System support pages on the Illumina website provide additional system resources. These resources include software, training, compatible products, and the following documentation. Always check support pages for the latest versions.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Custom Protocol Selector</td>
<td>A tool for generating end-to-end instructions tailored to your library prep method, run parameters, and analysis method, with options to refine the level of detail.</td>
</tr>
<tr>
<td>NextSeq 1000 and NextSeq 2000 Sequencing Systems Safety and Compliance Guide (document # 1000000111928)</td>
<td>Provides information about operational safety considerations, compliance statements, and instrument labeling.</td>
</tr>
</tbody>
</table>

\(^1\)next-generation sequencing
<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID Reader Module Compliance Guide (document # 1000000002699)</td>
<td>Provides information about the RFID reader in the instrument, compliance certifications, and safety considerations.</td>
</tr>
<tr>
<td>NextSeq 2000 Sequencing System Site Prep Guide (document # 1000000109378)</td>
<td>Provides specifications for laboratory space, electrical requirements, and environmental and network considerations.</td>
</tr>
<tr>
<td>BaseSpace help (help.basespace.illumina.com)</td>
<td>Provides information about using BaseSpace™ Sequence Hub and available analysis options.</td>
</tr>
<tr>
<td>Index Adapters Pooling Guide (document # 1000000041074)</td>
<td>Provides pooling guidelines and dual indexing strategies.</td>
</tr>
<tr>
<td>Illumina Adapter Sequences (document # 1000000002694)</td>
<td>Provides lists of the adapter sequences for Illumina library prep kits.</td>
</tr>
</tbody>
</table>

Instrument Hardware

NextSeq 2000 Sequencing System comprises a power button, monitor, status bar, consumables compartment, and USB ports.

Figure 1 External System Components

A. **Air filter compartment**—Provides access to replaceable air filter.

B. **Touch-screen monitor**—Enables on-instrument configuration and setup using the control software interface.

C. **Status bar**—Light color progresses as the system moves through its workflow. Blue and purple indicate interactivity (eg, pre-run checks) and multicolor indicates notable moments and data (eg, sequencing completion). Critical errors are indicated by a red light.
D. **Power button**—Controls instrument power and indicates whether the system is on (glows), off (dark), or off but with AC power (pulses).

E. **3.0 USB Port**—For connecting an external portable drive for data transfer.

F. **2.0 USB Ports**—For connecting a mouse and keyboard.

Power and Auxiliary Connections

You can gently move the instrument to access the power switch, USB port, and other auxiliary connections on the back of the instrument.

The back of the instrument has the switch and inlet that controls power to the instrument, and two Ethernet ports for an optional Ethernet connection. A 3.0 USB port provides the option to connect an external portable drive for data transfer (exFAT is not supported on this Linux-based platform).

NextSeq 2000 Sequencing System comes equipped with two Ethernet ports to expand system capability and flexibility. For example, one Ethernet port can be dedicated to communication with an internal network drive and the other port dedicated to external communication such as BaseSpace Sequence Hub or Proactive Support.

Figure 2 Rear Panel Components

- A. **Toggle switch**—Turns instrument power on and off.
- B. **Power inlet**—Power cord connection.
- C. **Ethernet ports (2)**—Optional Ethernet cable connection.
- D. **3.0 USB port**—For connecting an external hard drive for data transfer.

Consumables Compartment

The consumables compartment contains the cartridge, including the flow cell and diluted library, for a sequencing run.
Figure 3 Loaded Consumables Compartment

A. **Cartridge**—Contains the flow cell, library, and reagents, and collects used reagents during the run.
B. **Tray**—Holds the cartridge during sequencing.
C. **Visor**—Opens to provide access to the consumables compartment.

Integrated Software

The system software suite includes integrated applications that perform sequencing runs and analysis.

- **NextSeq 1000/2000 Control Software**—Controls instrument operations and provides an interface for configuring the system, setting up a sequencing run, and monitoring run statistics as sequencing progresses.
- **Real-Time Analysis (RTA3)**—Performs image analysis and base calling during the run. For more information, see *Sequencing Output on page 36*.
- **Universal Copy Service**—Copies sequencing output files from the run folder to BaseSpace Sequence Hub (if applicable) and the output folder, where you can access them.

The control software is interactive and runs automated background processes. Real-Time Analysis and Universal Copy Service run background processes only.

System Information

Select the control software menu in the upper left corner to open the About section. The About section contains Illumina contact information and the following system information:

- Instrument Serial Number
- Computer Name
- System Suite Version
- Image OS Version
- Total Run Count
Notifications and Alerts

The notification icon is located in the top-right corner. When a warning or error occurs, the right panel slides out to indicate notifications. Select the icon at any time to view a list of Current or Historic notifications for warnings and errors.

- Warnings require attention, but do not stop a run or require action other than acknowledgment.
- Errors require action before starting or proceeding with a run.

Minimize the Control Software

Minimize the control software to access other applications. For example, to browse to the output folder in File Explorer or find a sample sheet.

1. From the control software menu, select Minimize Application.
 - The control software is minimized.
2. To maximize the control software, Select NextSeq 1000/2000 Control Software from the toolbar.

Process Management

The Process Management screen displays temporary runs that are stored at /usr/local/illumina/runs. Each run is identified by run date, name, and ID. Information such as status of Run, Secondary Analysis, Output Folder, and Cloud are also shown for each run. Select the run to view additional information, including Workflow, Average % Q30, Total Reads PF, and Total Yield. To delete runs and clear space, see Clear Hard Drive Space on page 49. To requeue on-instrument analysis, see Requeue a Run on page 54.

Status of Run

This section displays the status of the sequencing run:

- **In Progress**—Sequencing run in progress.
- **Complete**—Sequencing run is complete.
- **Stopped**—Sequencing run was stopped.
- **Errored**—Sequencing run has an error.

Status of Secondary Analysis

This section displays the status of the on-instrument DRAGEN secondary analysis. This will display N/A if analysis is occurring in BaseSpace Sequence Hub.

- **Not Started**—DRAGEN analysis not yet started.
- **In Progress**—DRAGEN analysis in progress.
- **Stopped**—DRAGEN analysis has been stopped.
- **Errored**—DRAGEN analysis has an error.
- **Complete**—DRAGEN analysis is complete.

Status of Output Folder

This section displays the status of files being copied to the output folder.
In Progress—Files are being copied to the output folder.
Complete—Files have been successfully copied to the output folder.

Status of Cloud (BaseSpace Sequence Hub)
The section displays the status of files being uploaded to BaseSpace Sequence Hub via the cloud:
In Progress—The control software is uploading files to BaseSpace Sequence Hub.
Complete—Files have been successfully uploaded to BaseSpace Sequence Hub.

Troubleshooting a Status Issue
• If the run is in progress, close the Process Management screen, wait about five minutes, and then reopen.
• If the run is not in progress, power cycle the instrument, and then reopen the Process Management screen. See Power Cycle the Instrument on page 55.

Sequencing Protocol Diagram
The following diagram illustrates the sequencing protocol using the NextSeq 2000.

1. Thaw the Bagged Cartridge
2. Prepare the Flow Cell and Libraries
3. Load Flow Cell and Libraries Into the Cartridge

4A. Set Up a Sequencing Run (Instrument Run Setup)
4B. Set Up a Sequencing Run (Sample Sheet v2)
4C. Set Up a Sequencing Run (No Sample Sheet)

5A. Cloud Mode DRAGEN Analysis (BaseSpace Sequence Hub)
5B. Hybrid Mode DRAGEN Analysis (On-Instrument)
5A. Local Mode DRAGEN Analysis (On-Instrument)
5B. BaseSpace Sequence Hub App Analysis (BaseSpace Sequence Hub)
5. Standalone Mode Custom Analysis (cBCL Data Only)

How Sequencing Works
Cluster generation, sequencing, and analysis comprise sequencing on the NextSeq 2000 Sequencing System. Each step occurs automatically during a sequencing run. Depending on system configuration, further analysis is performed off-instrument after the run is complete.
Cluster Generation

Library\(^1\) is automatically denatured into single strands and further diluted onboard the instrument. During cluster generation, single DNA molecules are bound to the surface of the flow cell and amplified to form clusters\(^2\). Cluster generation takes \(\sim 4\) hours.

Sequencing

Clusters are imaged using two-channel chemistry, one green channel and one blue channel, to encode data for the four nucleotides. After one tile on the flow cell is imaged, the next tile is imaged. The process is repeated for each cycle of sequencing (\(\sim 5\) minutes per cycle). Following image analysis, Real-Time Analysis software performs base calling\(^3\), filtering, and quality scoring.\(^4\)

For more information, see *Base Calling on page 39*.

Primary Analysis

As the run progresses, the control software automatically transfers base call files\(^5\) (*.cbcl) to the specified output folder for data analysis. During the sequencing run, real time analysis (RTA\(^3\)) software performs image analysis, base calling, and demultiplexing\(^6\). When sequencing is complete secondary analysis begins. The method of secondary data analysis depends on your application and system configuration.

Secondary Analysis

BaseSpace Sequence Hub is the Illumina cloud computing environment for run monitoring, data analysis, storage, and collaboration. It hosts DRAGEN and BaseSpace Sequence Hub apps, which support common analysis methods for sequencing.

After initial sequencing analysis is complete, DRAGEN performs a secondary analysis by using one of the available analysis pipelines. For information on each of the DRAGEN pipelines, see *DRAGEN Secondary Analysis Output Files on page 42*.

If using Cloud or Hybrid mode, DRAGEN retrieves sample sheet, reference genome, and run input files from the Instrument Run Setup in BaseSpace Sequence Hub. For Cloud mode, cBCL data are uploaded automatically to BaseSpace Sequence Hub, and BaseSpace Sequence Hub initiates DRAGEN secondary analysis. For Hybrid mode, DRAGEN secondary analysis is performed on-instrument, and output files can be stored in a selected folder or in the cloud.

\(^1\)A DNA or RNA sample that has adapters attached for sequencing. Preparation methods vary.

\(^2\)A clonal group of DNA strands on a flow cell that produce one sequencing read. Each DNA strand on a flow cell seeds a template that is amplified until the cluster consists of hundreds or thousands of copies. For example, a flow cell with 10,000 clusters produces 10,000 single reads or 20,000 paired-end reads.

\(^3\)Determining a base (A, C, G, or T) for every cluster in a tile at a specific cycle.

\(^4\)Calculates a set of quality predictors for each base call, and then uses the predictor value to look up the Q-score.

\(^5\)Contains the base call and associated quality score for every cluster of each sequencing cycle.

\(^6\)An analysis process that differentiates reads for each library in a pool.
If using Local mode, DRAGEN retrieves the provided sample sheet, reference genome, and run input files from the NextSeq 2000 Sequencing System. DRAGEN secondary analysis is performed on-instrument and output files are stored in a selected output folder. If Proactive, Run Monitoring and Storage is selected, analysis can also be initiated through BaseSpace Sequence Hub apps after sequencing completion.

If using Standalone mode, set up a run without a sample sheet. This workflow is recommended for custom analysis workflows that start from cBCL data.

- For more information on BaseSpace Sequence Hub, see the BaseSpace Sequence Hub Online Help.
- For more information on DRAGEN, see the DRAGEN Bio-IT Platform support page.
- For an overview of all apps, see BaseSpace Apps.
System Configuration

This section provides instructions for setting up your system, including descriptions of software settings.

These instructions primarily describe the control software, with some information on configuring the network and operating system.

Using Google Chrome on the instrument will prompt you to unlock your login keyring. You can safely ignore and cancel out of the prompt.

User Account Requirements

The Linux operating system has three accounts:

- root (super administrator)
- ilmnadmin (administrator)
- ilmnuser (user)

The administrator account is intended only for applying system updates, like updating NextSeq 1000/2000 Control Software, or for use by IT staff to mount a persistent network drive.

Perform all other functions, including sequencing, from the user account.

Password Requirements

The Field Service Engineer initiates a password change for all three accounts after completing instrument installation. Update each password every 180 days, when prompted.

Table 1 Default Password Policies

<table>
<thead>
<tr>
<th>Policy</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enforce password history</td>
<td>Five passwords remembered</td>
</tr>
<tr>
<td>Lockout threshold</td>
<td>Ten invalid logon attempts</td>
</tr>
<tr>
<td>Minimum password length</td>
<td>Ten characters</td>
</tr>
<tr>
<td>Minimum character variety</td>
<td>Three each of: number, upper case letter, lower case letter, and symbol</td>
</tr>
<tr>
<td>Maximum repeating characters</td>
<td>Three characters</td>
</tr>
<tr>
<td>Password must meet complexity requirements</td>
<td>Disabled</td>
</tr>
<tr>
<td>Store passwords using reversible encryption</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

Configure BaseSpace Sequence Hub and Proactive Support

Use the following instructions to configure BaseSpace Sequence Hub and Proactive Support on your system. To set up a BaseSpace Sequence Hub account, see the BaseSpace Sequence Hub Online Help.

1. From the control software menu, select **Settings**.
2. For BaseSpace Sequence Hub and Proactive Support Settings, select one of the following options:
<table>
<thead>
<tr>
<th>Option</th>
<th>Description and Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proactive Support Only*</td>
<td>Send instrument performance data to Illumina for faster troubleshooting. Requires an internet connection.</td>
</tr>
<tr>
<td>Proactive and Run Monitoring</td>
<td>Send InterOp and log files to BaseSpace Sequence Hub for remote run monitoring. This option is the default. Requires a BaseSpace Sequence Hub account and an internet connection.</td>
</tr>
<tr>
<td>Proactive, Run Monitoring and Storage</td>
<td>Send InterOp files, log files, and run data to BaseSpace Sequence Hub for remote monitoring and analysis. Requires a BaseSpace Sequence Hub account, an internet connection, and a sample sheet.</td>
</tr>
<tr>
<td>None</td>
<td>Disconnect runs from BaseSpace Sequence Hub accounts and do not send instrument performance data for Illumina Proactive Support.</td>
</tr>
</tbody>
</table>

* Depending on the control software version, the name of this setting on the software interface might differ from the name in this guide.

When any option except None is selected, Proactive Support is enabled. This is a free service that allows you to see your performance data on MyIllumina Customer Dashboard and allows Illumina’s service teams to troubleshoot issues faster.

- Proactive and Run Monitoring is turned on by default. To opt out of this service, select None.

3. If you selected None at step 2, select Save to finish. Otherwise, continue through step 6.

4. From the Hosting Location list, select the location of the BaseSpace Sequence Hub server where data are uploaded to.
 Make sure to use the Hosting Location in or closest to your region.

5. If you have an Enterprise subscription, enter the domain name (URL) used for your BaseSpace Sequence Hub account.
 For example: https://yourlab.basespace.illumina.com.

6. Select Save.

Specify the Default Output Folder Location

Use the instructions in this section to select a default output folder location. You can change the output folder for each run during run setup. The software saves cBCL files1 and other run data to the output folder.

An output folder is required unless BaseSpace Sequence Hub is configured for Proactive, Run Monitoring and Storage. Only use an external or network drive as the default output folder. Using an on-instrument output folder negatively impacts your sequencing run.

1Contains the base call and associated quality score for every cluster of each sequencing cycle.
Specify an External Drive Output Folder

Use the following instructions to select an external portable drive as the default output folder.

1. Plug in an external portable drive using the 3.0 USB port on the side or back of the instrument. Make sure the external portable drive allows write permissions. If it is set to Read Only, the control software will not be able to save data to it.

2. Create a new folder on the external portable drive. This folder will become the default output folder location.
 NextSeq 1000/2000 Control Software requires at least two levels of nested folders to recognize the location as an external portable drive.

3. From the control software menu, select Settings.

4. Under Default Output Folder, select the existing folder path and navigate to the new folder on the external portable drive.

5. [Optional] If you have selected Online Run Setup under Run Mode, select an option from the Hosting Location drop-down menu.

6. Select Save.

Specify a Network Drive Default Output Folder

Use the following instructions to mount a persistent network drive and specify the default output folder location. Server Message Block (SMB)/Common Internet File Systems (CIFS) and Network File System (NFS) are the only supported methods for persistent mounting of a network drive on the NextSeq 2000.

SMB/CIFS Mounting Instructions

1. If NextSeq 1000/2000 Control Software is open, select Minimize Application.

2. Log into ilmnadmin.

3. Select Applications.

4. Under Favorites, select Terminal.

5. Enter sudo touch /root/.smbcreds, and then select Enter.

6. Enter sudo gedit /root/.smbcreds, and then select Enter to open the text file named smbcreds.

7. When the .smbcreds text file opens, enter your log in credentials in the following format.
 username=<user name>
 password=<password>
 domain=<domain_name>

 Brackets are not required for username, password, and domain credentials. Domain credential is only required if the remote account is part of a domain.

8. Select Save and exit the file.

9. Identify the server name and share name for your SMB/CIFs server. The server name and share name cannot have spaces, for example:
 Server name: 192.168.500.100 or Myserver-myinstitute-03
 Share name: /share1

10. In the terminal, enter sudo chmod 400 /root/.smbcreds, and then select Enter to grant read access to the .smbcreds text file.
11. Enter `sudo mkdir /mnt/<local name>.
 <local name> is the name of the new directory in your network drive and can contain spaces.
 This is the directory that will appear on the instrument.
12. Select Enter.
13. Enter `sudo gedit /etc/fstab`, and then select Enter.
14. When the fstab file opens, enter the following anywhere in the file, and then select Enter.

 //<Server name>/<Share name> /mnt/<local name> cifs
 credentials=/root/.smbcreds,uid=ilmnadmin,gid=ilmnuser,dir_
 mode=0775,file_mode=0775,_netdev,x-systemd.automount,sec=ntlmssp 0 0

15. Select Save and exit the file.
16. In the terminal, enter `sudo mount -a -vvv`, and then select Enter.
 The network drive is now mounted as /mnt/<local name>.
17. To confirm if the mount was successful, enter `<df | grep <local name>>` and then select Enter.
 The name of the fileshare should appear.
18. Create a new <sub folder> within the <local name> folder. The subfolder represents your default output folder location.
 The NextSeq 1000/2000 Control Software requires at least two levels of nested folders to recognize the location as a mounted network drive.
20. Set the persistent mounted network drive as the default output folder. See Specify the Persistent Network Drive as the Default Output Folder on page 13.

NFS Mounting Instructions
1. If NextSeq 1000/2000 Control Software is open, select Minimize Application.
2. Log into ilmnadmin.
3. Identify the server name for your NFS server.
 The server name cannot have spaces, for example:
 `Server name: 192.168.500.100` or `Myserver-myinstitute-03`
4. Select Applications.
5. Under Favorites, select Terminal.
6. Enter `sudo mkdir /mnt/<local name>`, and then select Enter.
 <local name> is the name of the new directory in your network drive.
7. Enter `sudo gedit /etc/fstab`, and then select Enter.
8. When the fstab file opens, enter the following, and then select Enter.
 `Server name:/mnt /mnt/<local name> nfs defaults 0 0`
9. Select Save and exit the file.
10. In the terminal, enter `sudo mount -a -vvv`, and then select Enter.
 The network drive is now mounted in the /mnt/directory within the <local name> folder.
11. Create a new <sub folder> within the <local name> folder. The subfolder represents your default output folder location.
The NextSeq 1000/2000 Control Software requires at least two levels of nested folders to recognize the location as a mounted network drive.

13. Set the persistent mounted network drive as the default output folder. See Specify the Persistent Network Drive as the Default Output Folder on page 13.

Specify the Persistent Network Drive as the Default Output Folder

1. Login into ilmnuser.
2. From the NextSeq 1000/2000 Control Software menu, select Settings.
3. Under Default Output Folder, select the persistent network drive mount located at /mnt/<local name>/<output directory>.
4. [Optional] If you have selected Online Run Setup under Run Mode, select an option from the Hosting Location drop-down menu.
5. Select Save.

Import Custom Reference Genomes

New custom reference genomes can only be imported using the administrator account. For a list of all compatible reference genomes, including reference genomes installed on instrument, visit the NextSeq 1000/2000 Product Compatibility page.

1. Create a reference genome using the Reference Builder for Illumina Instruments BaseSpace Sequence Hub app. For more information, see Reference Builder for Illumina Instruments v1.0.0 App Online Help.
2. Log into ilmnadmin.
3. Select the control software menu, and then select Process Management.
4. Make sure that there are no sequencing runs or on-instrument secondary analyses in progress.
5. Select the control software menu, and then select DRAGEN.
6. In the Genome section, select Choose under Import New Reference Genomes, navigate to the reference genome file (*.tar.gz) on the portable or mounted network drive, and then select Open.
7. Select Import.

Configure Run Mode

The run mode applies to all runs and determines where to enter run parameters and how to analyze data.

Cloud or Hybrid Mode

1. From the control software menu, select Settings.
2. Select Online Run Setup under BaseSpace Sequence Hub Services & Proactive Support.
3. Configure additional settings appropriately by selecting the following:
 a. Proactive and Run Monitoring or Proactive, Run Monitoring and Storage.
 b. Dropdown menu for Hosting Location.
 c. [Optional] Enter a Private Domain Name.
4. Select Save.
Local or Standalone Mode

1. From the control software menu, select Settings.
2. Select Local Run Setup under BaseSpace Sequence Hub Services & Proactive Support.
3. Configure additional settings appropriately by selecting the following:
 a. Proactive Support Only, Proactive and Run Monitoring, Proactive, Run Monitoring and Storage, or None.

 BaseSpace Sequence Hub will only allow requeue functionality if Proactive, Run Monitoring and Storage is selected. In the event of an invalid sample sheet, this will allow you to make corrections to the sample sheet and requeue demultiplexing analysis. For on-instrument requeue functionality, see Requeue a Run on page 54.
 b. Dropdown menu for Hosting Location.
 c. [Optional] Enter a Private Domain Name.
4. Select Save.

Sample Sheet Considerations for Local or Standalone Mode

You must use the sample sheet v2 file format to analyze with DRAGEN. Sample sheet v2 file format is also compatible with BaseSpace Sequence Hub apps that are not DRAGEN enabled. For information on creating a sample sheet in the v2 file format, see Sample Sheet v2 Settings on page 57.

Instrument Customization

Available customization settings include reagent purge preferences and software update preferences. To set a default output folder, see Specify the Default Output Folder Location on page 10.

Set Automatic Reagent Purge Preference

1. From the control software menu, select Settings.
2. Choose whether the system automatically purges unused reagents to the spent reagents compartment after each run to streamline reagent waste disposal after run completion:
 • To purge automatically, select the Purge Reagent Cartridge checkbox.
 • To skip automatic purging, deselect the Purge Reagent Cartridge checkbox (this is the default setting).

 Purging unused reagents adds up to 2 hours to the workflow.
3. Select Save.

Configure Software Updates

1. From the control software menu, select Settings.
2. Choose whether the system automatically checks for software updates:
 • To check automatically, select the Autocheck for software updates checkbox.
 • To check manually, deselect the Autocheck for software updates checkbox.

 Checking for software updates automatically requires an internet connection. For more information on installing software updates, see Software Updates on page 49.
3. Select Save.
Consumables & Equipment

This section lists everything that comes in the reagent kit with storage conditions. You can also see which ancillary consumables and equipment you must purchase to complete the protocol and perform maintenance and troubleshooting procedures.

Sequencing Consumables

Sequencing on the NextSeq 2000 requires one single-use Illumina NextSeq 1000/2000 P2 Reagents kit. The kit is available in three sizes (100-cycle, 200-cycle, 300-cycle).

NextSeq 1000/2000 P2 Reagents provide the cartridge and flow cell for sequencing. When you receive NextSeq 1000/2000 P2 Reagents:

- Promptly store components at the indicated temperatures to ensure proper performance.
- Do not open any silver foil bag until instructed to do so.
- Store cartridges in their box to avoid tearing or puncturing the foil bag.
- Store cartridges with the arrows pointing up.

⚠️ If label is not facing up, sequencing data will be negatively impacted.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Kit Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumable</td>
<td>Quantity</td>
</tr>
<tr>
<td>Cartridge</td>
<td>1</td>
</tr>
<tr>
<td>Flow cell</td>
<td>1</td>
</tr>
</tbody>
</table>

*Shipped at room temperature.

Both consumables have identifiers for tracking and ensuring compatibility. The cartridge and flow cell use RFID\(^1\).

Flow Cell

The flow cell is a patterned, single-lane flow cell. A plastic cartridge encases the glass-based flow cell. A gray tab covers and protrudes from the flow cell to ensure safe handling.

\(^1\)radio-frequency identification
Millions of nanowells cover the inner surface of the flow cell. Clusters are generated in the nanowells, from which the sequencing reaction is then performed. The patterned arrangement of the nanowells increases output reads and data.

Cartridge

The sequencing reagent cartridge is prefilled with clustering, sequencing, paired-end, and indexing reagents. A foil-sealed reservoir is reserved for libraries, and a slot on the front is reserved for the flow cell.
The cartridge contains all consumables for a run: reagents, library, and flow cell. The library and flow cell are loaded into the thawed cartridge, which is then loaded onto the instrument. After the run begins, reagents and library are automatically transferred from the cartridge to the flow cell.

The cartridge contains pumps, valves, and all fluidics for the system, including an underside reservoir to collect used reagents. The cartridge is discarded after a run, so instrument washes are not necessary.

Supported Number of Cycles

The label on the cartridge indicates how many cycles are analyzed, not how many cycles are performed. The flow cell is compatible with any number of cycles and any read type.

All cartridges include an extra 27 cycles. For example, the 300-cycle cartridge provides sufficient reagents for up to 327 cycles of sequencing. For information on how many cycles to sequence, see *Number of Cycles in a Read*.

Symbol Descriptions

The following table describes the symbols on the consumable or consumable packaging.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The date the consumable expires. For best results, use the consumable before this date.</td>
</tr>
<tr>
<td></td>
<td>Indicates the manufacturer (Illumina).</td>
</tr>
<tr>
<td></td>
<td>The intended use is Research Use Only (RUO).</td>
</tr>
<tr>
<td></td>
<td>Indicates the part number so that the consumable can be identified.¹</td>
</tr>
<tr>
<td></td>
<td>Indicates the batch code to identify the batch or lot that the consumable was manufactured in.¹</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Indicates a health hazard.</td>
</tr>
<tr>
<td></td>
<td>Storage temperature range in degrees Celsius. Store the consumable within the indicated range.²</td>
</tr>
</tbody>
</table>

Ancillary Consumables

Purchase the following consumables for sequencing and maintenance.

Consumables for Sequencing

Table 3 Consumables for Sequencing

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposable gloves, powder-free</td>
<td>General lab supplier</td>
<td>General purpose.</td>
</tr>
<tr>
<td>NextSeq 1000/2000 P2 Reagents</td>
<td>Illumina: catalog # 20043738 (100 cycles), catalog # 20043737 (200 cycles), catalog # 20043736 (300 cycles)</td>
<td>Provides the reagent cartridge and flow cell for a single run.</td>
</tr>
<tr>
<td>Microtubes, 1.5 ml</td>
<td>Fisher Scientific, catalog # 14-222-158, or equivalent low-bind tubes</td>
<td>Diluting libraries to the loading concentration.</td>
</tr>
<tr>
<td>Pipette tips, 10 µl</td>
<td>General lab supplier</td>
<td>Diluting libraries.</td>
</tr>
<tr>
<td>Pipette tips, 20 µl</td>
<td>General lab supplier</td>
<td>Diluting and loading libraries.</td>
</tr>
<tr>
<td>Pipette tips, 200 µl</td>
<td>General lab supplier</td>
<td>Diluting libraries.</td>
</tr>
<tr>
<td>Pipette tips, 1000 µl</td>
<td>General lab supplier</td>
<td>Piercing the library reservoir foil.</td>
</tr>
<tr>
<td>Resuspension Buffer (RSB)</td>
<td>Illumina, provided with library prep kits</td>
<td>Diluting libraries to the loading concentration.</td>
</tr>
</tbody>
</table>
Consumable

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Optional] 10 mM Tris-HCl with 0.1% Tween 20, pH 8.5</td>
<td>General lab supplier</td>
<td>Substitute for RSB to dilute libraries to the loading concentration.</td>
</tr>
<tr>
<td>[Optional] PhiX Control v3</td>
<td>Illumina, catalog # FC-110-3001</td>
<td>Performing a PhiX-only run or spiking in a PhiX control.</td>
</tr>
<tr>
<td>[Optional] Ethanol wipes, 70%</td>
<td>Fisher Scientific, catalog # 19-037-876, or equivalent</td>
<td>Substitute for isopropyl alcohol wipes to clean the flow cell.</td>
</tr>
<tr>
<td>[Optional] Paper towels</td>
<td>General lab supplier</td>
<td>Drying the cartridge after a water bath.</td>
</tr>
</tbody>
</table>

Consumables for Maintenance

Table 4 Consumables for Maintenance

<table>
<thead>
<tr>
<th>Consumable</th>
<th>Supplier</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposable gloves, powder-free</td>
<td>General lab supplier</td>
<td>General purpose.</td>
</tr>
<tr>
<td>NextSeq 1000/2000 Air Filter Replacement*</td>
<td>Illumina, catalog # 20042131</td>
<td>Replacing the air filter every six months.</td>
</tr>
</tbody>
</table>

* The instrument ships with one installed and one spare. When not under warranty, replacements are user-supplied. Keep packaged until use.

Ancillary Equipment

Purchase the following equipment for sequencing purposes.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezer, -25°C to -15°C</td>
<td>General lab supplier</td>
<td>Storing the cartridge.</td>
</tr>
<tr>
<td>Ice bucket</td>
<td>General lab supplier</td>
<td>Setting aside libraries until sequencing.</td>
</tr>
<tr>
<td>Pipette, 10 µl</td>
<td>General lab supplier</td>
<td>Diluting libraries to the loading concentration.</td>
</tr>
<tr>
<td>Pipette, 20 µl</td>
<td>General lab supplier</td>
<td>Diluting libraries to the loading concentration and loading libraries into the cartridge.</td>
</tr>
<tr>
<td>Pipette, 200 µl</td>
<td>General lab supplier</td>
<td>Diluting libraries to the loading concentration.</td>
</tr>
<tr>
<td>Refrigerator, 2°C to 8°C</td>
<td>General lab supplier</td>
<td>Storing the flow cell or thawing the cartridge.</td>
</tr>
<tr>
<td>Item</td>
<td>Source</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| [Optional] One of the following temperature controlled water baths or equivalent:
 • Thermo Scientific Precision 35L Circulating Water Bath (holds 5 cartridges simultaneously)
 • SHEL LAB 22L Digital Circulating Water Bath (holds 3 cartridges simultaneously) | • Thermo Fisher Scientific, catalog # TSCIR 35
 • Shel Lab, catalog # SWBC22 | Thawing the cartridge. |
Protocol

This section provides step by step instructions on how to prepare consumables, dilute libraries, and set up a sequencing run in one of four run modes (Cloud, Hybrid, and Local mode use DRAGEN or BaseSpace Sequence Hub apps, while Standalone mode is a standalone run intended for generating cBCL data only for custom analysis workflows).

When handling reagents and other chemicals, wear safety glasses, a lab coat, and powder-free gloves. Make sure that you have the required consumables and equipment before starting a protocol. See Consumables & Equipment.

Follow the protocols in the order shown, using the specified volumes, temperatures, and durations.

Sequencing Considerations

Before starting the protocol, review the following information to prepare for diluting libraries and setting up the run. Achieving the optimum loading concentration is critical for successful sequencing and analysis. Entering the correct number of cycles in a read helps ensure optimum data output.

Loading Volume and Concentrations

Loading volume is 20 µl. Loading concentration varies by library type:

<table>
<thead>
<tr>
<th>Library Type</th>
<th>Loading Concentration (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmpliSeq™ for Illumina Library PLUS</td>
<td>750</td>
</tr>
<tr>
<td>Illumina DNA Prep</td>
<td>750</td>
</tr>
<tr>
<td>Illumina DNA Prep with Enrichment</td>
<td>1000</td>
</tr>
<tr>
<td>100 % PhiX</td>
<td>650</td>
</tr>
<tr>
<td>TruSeq DNA Nano 350</td>
<td>1200</td>
</tr>
<tr>
<td>TruSeq DNA Nano 550</td>
<td>1500</td>
</tr>
<tr>
<td>TruSeq Stranded mRNA</td>
<td>1000</td>
</tr>
</tbody>
</table>

For other library types, 650 pM is the recommended starting loading concentration. Optimize this concentration over subsequent runs to identify a loading concentration that consistently yields data that meets specifications.

The %Occupancy rate is visible in BaseSpace Sequence Hub and indicates the percentage of wells containing clusters. Do not use %Occupancy rate to optimize loading concentration on the NextSeq 2000.

Number of Cycles in a Read

For each read, entering a minimum of 26 cycles and a maximum of 151 cycles helps ensure data quality. The exact number of cycles depends on your experiment. NextSeq 1000/2000 Control Software requires at least 1 cycle for Read 1, but displays a warning when the number of cycles in Read 1 is less than 26.
The total number of cycles for Read 1, Index 1, Index 2, and Read 2 cannot be greater than the number of cycles supported by the kit plus 27. NextSeq 1000/2000 Control Software will display a warning when Index 1 and Index 2 are less than 6 cycles. The warning will not be shown if Index 1 or Index 2 is 0 cycles.

The minimum and maximum cycle numbers include an extra cycle. Always add one cycle to the desired read length to correct the effects of phasing and prephasing. Read length is the number of sequencing cycles in Read 1 and Read 2, which excludes extra cycles and index cycles. For more information, see Phasing Correction under Real-Time Analysis Workflow on page 38.

Example run setup:
- For a read length of 35 (single-read), enter 36 in the Read 1 field.
- For a read length of 150 per read (paired-end), enter 151 in the Read 1 field and 151 in the Read 2 field.

Plan a Sequencing Run in BaseSpace Sequence Hub

Use Instrument Run Setup in BaseSpace Sequence Hub to create and configure your run settings. If you are setting up a run in Cloud mode or Hybrid mode, submit the run configuration to your BaseSpace Sequence Hub account planned runs list in the Planned Runs tab where runs available for sequencing on the NextSeq 2000 Sequencing System are displayed.

If you are setting up a run in Local mode, use Instrument Run Setup to create and export your sample sheet in v2 file format. Alternatively, see Sample Sheet v2 Settings on page 57 to create a sample sheet without BaseSpace Sequence Hub using a provided template.

Set up a Run

1. Navigate to BaseSpace Sequence Hub.
2. Enter your email address and BaseSpace Sequence Hub password, and then select Sign in.
3. Select the Run Planning tab, and then select Instrument Run Setup.
5. In the Run Name field, enter a unique name of your preference to identify the current run. The run name can contain a maximum of 225 alphanumeric characters, spaces, dashes, and underscores.
6. Select one of the following analysis locations.
 - BaseSpace—Analyze sequencing data in the cloud.
 - Local—Analyze sequencing data on-instrument or generate a Sample Sheet v2 for Local mode.
7. Select an analysis type and version.
 For more information about secondary analyses, see DRAGEN Secondary Analysis Output Files on page 42 or the BaseSpace Sequence Hub app documentation.
 For on-instrument analysis, the version selected must match the version of DRAGEN installed on the instrument. To confirm the version of DRAGEN installed on the instrument, see DRAGEN Pipeline and License Updates on page 50.
8. [Optional] Set up custom index kits as follows.
 a. Select Add Custom Index Adapter Kit under the Index Adapter Kit dropdown.
b. Select a template type and enter the kit name, adapter sequences, index strategies, and index sequences. Make sure the second index (i5) adapter sequences are in forward orientation.

c. Select Create New Kit.

9. [Optional] Set up custom library prep kit as follows.
 a. Select Add Custom Library Prep Kit under the Library Prep Kit dropdown.
 b. Enter the name, read types, default read cycles, and compatible index adapter kits for your custom library prep kit.
 c. Select Create New Kit.

10. Select the following instrument settings. Depending on the library prep kit, recommended options are automatically selected. Some library prep kits have hard-coded number of indexes reads and read types, which cannot be changed.
 • Library prep kit
 • Index adapter kit
 • Number of index reads
 • Read type
 • Number of sequencing cycles per read

 If Not Specified is selected for library prep kit, number of index reads is not updated until index sequences are entered into the Sample Data section.

11. Enter sample information into the Sample Data spreadsheet using one of the following options. To group samples for data aggregation during downstream analysis, assign a name for the group in the Group column.
 • Paste sample IDs and either index plate well positions or i7 and i5 indexes directly from an external file. Before pasting, enter the number of sample rows in the Rows field, and then select +. Sample IDs can contain up to 20 alphanumeric characters, hyphens, and underscores.

 Fixed-layout index plates require entries for well position. Indexes that do not have a fixed layout require entries for i7 and i5 indexes. i5 indexes must be entered in the forward orientation.
 • Select Import Data, and then select your sample sheet. Make sure the index sequences specified in the BCLConvert_Data sample sheet section match the index kit selected in the NextSeq 2000 and that your sample sheet meets the formatting requirements. See Sample Sheet v2 Settings on page 57. Altering your sample sheet after initial download can result in analysis failure.
 • Manually enter sample IDs and corresponding well positions or indexes. If Not Specified is selected for the library prep kit, enter Index 2 (i5) sequences in the forward orientation.

12. Select Next.

Set up Secondary Analysis

Configure the settings for the analysis type selected for your run.

Illumina DRAGEN BCL Convert

Use the following steps to configure Illumina DRAGEN BCL Convert analysis.
1. Enter the following optional settings.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdapterRead1</td>
<td>Adapter sequence for read 1. If using an Illumina library prep kit, leave the AdapterRead1 field empty.</td>
</tr>
<tr>
<td>AdapterRead2</td>
<td>Adapter sequence for read 2. If using an Illumina library prep kit, leave the AdapterRead2 field empty.</td>
</tr>
<tr>
<td>BarcodeMismatchesIndex1</td>
<td>The number of allowed mismatches between the first index read and index sequence. The default value is 1.</td>
</tr>
<tr>
<td>BarcodeMismatchesIndex2</td>
<td>The number of allowed mismatches between the second index read and index sequence. The default value is 1.</td>
</tr>
<tr>
<td>OverrideCycles</td>
<td>String used to specify UMI cycles and mask out cycles of a read. The following values are allowed:</td>
</tr>
<tr>
<td></td>
<td>• N—Specifies cycles to ignore.</td>
</tr>
<tr>
<td></td>
<td>• Y—Specifies sequencing cycles.</td>
</tr>
<tr>
<td></td>
<td>• I—Specifies index cycles.</td>
</tr>
<tr>
<td></td>
<td>• U—Specifies UMI cycles to be trimmed.</td>
</tr>
<tr>
<td></td>
<td>Each element is separated by semicolons. The following are examples of OverrideCycles input.</td>
</tr>
<tr>
<td></td>
<td>U8Y143;I8;I8;U8Y143</td>
</tr>
<tr>
<td></td>
<td>N10Y66;I6;N10Y66</td>
</tr>
</tbody>
</table>

2. Complete the run configuration.
 - To send the run configuration to your BaseSpace Sequence Hub account, select Submit Run. Runs submitted to BaseSpace Sequence Hub appear in the planned runs list and are available for systems using Cloud mode or Hybrid mode.
 - To save the run configuration as a sample sheet in v2 file format, select Export Sample Sheet from the Submit Run drop-down list. The sample sheet is required to initiate runs on systems using Local mode. This option is only available if Local was selected for analysis location.

Illumina DRAGEN Enrichment

Use the following steps to configure Illumina DRAGEN Enrichment analysis.

1. Select a reference genome.
 - If possible, use a reference genome with alt aware.
2. Select a *.bed file containing the regions you would like to target or upload a new custom file.
 - Make sure the BED file's reference genome matches the reference genome selected in step 1. For a new custom BED file, use the following naming format: name_of_panel_versionNumber.referencegenome.bed.
 - **Local mode**—Select Select Custom File (Local) to upload for a single run or Upload Custom File (BaseSpace) for repeated use.
 - **Cloud or Hybrid mode**—Select Upload Custom File (BaseSpace). The custom BED file is only available in the Workgroup it was uploaded to.
3. Select a map/align output format.
4. Complete the run configuration.
 • To send the run configuration to your BaseSpace Sequence Hub account, select **Submit Run**. Runs submitted to BaseSpace Sequence Hub appear in the planned runs list and are available for systems using Cloud mode or Hybrid mode.
 • To save the run configuration as a sample sheet in v2 file format, select **Export Sample Sheet** from the **Submit Run** drop-down list. The sample sheet and secondary analysis supporting files are downloaded in a .zip folder and are required to initiate runs on systems using Local mode. This option is only available if Local was selected for analysis location.

Illumina DRAGEN Germline

Use the following steps to configure Illumina DRAGEN Germline analysis.
1. Select your reference genome.
 If possible, use a reference genome with alt aware.
2. Select a map/align output format.
3. Complete the run configuration.
 • To send the run configuration to your BaseSpace Sequence Hub account, select **Submit Run**. Runs submitted to BaseSpace Sequence Hub appear in the planned runs list and are available for systems using Cloud mode or Hybrid mode.
 • To save the run configuration as a sample sheet in v2 file format, select **Export Sample Sheet** from the **Submit Run** drop-down list. The sample sheet and secondary analysis supporting files are downloaded in a .zip folder and are required to initiate runs on systems using Local mode. This option is only available if Local was selected for analysis location.

Illumina DRAGEN RNA

Use the following steps to configure Illumina DRAGEN RNA analysis.
1. Select your reference genome.
 If possible, use a reference genome without alt aware.
2. Select your map/align output format.
 • **Local mode**—Select **Select Custom File (Local)** to upload for a single run or **Upload Custom File (BaseSpace)** for repeated use.
 • **Cloud or Hybrid mode**—Select **Upload Custom File (BaseSpace)**. The GTF file is only available in the Workgroup it was uploaded to.
 Once a GTF file has been uploaded to a BaseSpace Sequence Hub Workgroup, select the RNA Annotation file from the dropdown menu.
4. Complete the run configuration.
 • To send the run configuration to your BaseSpace Sequence Hub account, select **Submit Run**. Runs submitted to BaseSpace Sequence Hub appear in the planned runs list and are available for systems using Cloud mode or Hybrid mode.
 • To save the run configuration as a sample sheet in v2 file format, select **Export Sample Sheet** from the **Submit Run** drop-down list. The sample sheet and secondary analysis
supporting files are downloaded in a .zip folder if an optional GTF file has been provided and are required to initiate runs on systems using Local mode. This option is only available if Local was selected for analysis location.

Thaw the Bagged Cartridge

This step thaws the cartridge *in the unopened bag* using one of three methods: controlled water bath, refrigerator, or room temperature air. Use the cartridge immediately after thawing, without refreezing. If you are unable to use the cartridge immediately after thawing, see *Return Consumables to Storage* on page 53.

Figure 4 Bagged Cartridge

Thaw in a Controlled Water Bath

1. Put on a new pair of powder-free gloves and remove the cartridge from storage.
2. Remove cartridge from the box but *do not open the silver foil bag*.

Thawing a torn or punctured bag in a water bath can result in sequencing failure. Thaw at room temperature or in a refrigerator instead.

3. Thaw the bagged cartridge in a controlled 25°C water bath for 6 hours:
 - Maintain a water depth of at least 9.5–10 cm regardless of how many cartridges you are thawing.
 - Set a temperature-controlled water bath to 25°C.
 - Face the bag label up and set in water bath without submerging.

 ⚠️ Do not attempt to weigh the cartridge down to submerge. If the bag label is not facing up or the cartridge inverts during thawing, sequencing data will be negatively impacted.

 - Do not exceed 8 hours in the water bath.
 - Do not simultaneously thaw more cartridges than supported by the water bath, see *Ancillary Equipment* on page 19.
 - Do not stack cartridges.
4. Remove cartridge from water bath and dry with paper towels.

Thaw in a Refrigerator

1. Put on a new pair of powder-free gloves.
2. One day prior to anticipated run, remove the cartridge from -25°C to -15°C storage.
3. Remove cartridge from the box but **do not open the silver foil bag**.
4. Position the cartridge at room temperature so that the label faces up and air can circulate on sides and top.

 ! | If the bag label is not facing up, sequencing data will be negatively impacted.
5. Thaw at room temperature for 6 hours.
6. Position the cartridge in a 2°C to 8°C refrigerator so that the label faces up and air can circulate on sides.

 ! | If the bag label is not facing up, sequencing data will be negatively impacted.
7. Thaw in the refrigerator for 12 hours. Do not exceed 72 hours.

Thaw at Room Temperature

1. Put on a new pair of powder-free gloves.
2. Remove the cartridge from -25°C to -15°C storage.
3. Remove cartridge from the box but **do not open the silver foil bag**.
4. Position the cartridge so that the label faces up and air can circulate on sides and top.

 ! | If the bag label is not facing up, sequencing data will be negatively impacted.
5. Thaw at room temperature for 9 hours. Do not exceed 16 hours.

Prepare the Flow Cell and Libraries

This step brings the flow cell to room temperature and dilutes libraries to the applicable loading concentration. An optional 2% PhiX\(^1\) spike-in provides additional metrics, base diversity, or a positive control. The PhiX spike-in percentage can be increased for libraries with lower base diversity. Libraries are denatured automatically onboard the instrument.

These instructions apply to supported Illumina libraries that are dual-stranded. Always perform a quality control analysis, optimize the loading concentration for your library, and use a normalization method that generates dual-strand libraries. Bead-based normalization that generates single-stranded libraries is not compatible with onboard denaturation.

Prepare the Flow Cell and Cartridge

1. Prepare the flow cell as follows.
 a. Remove a new flow cell from 2°C to 8°C storage.

\(^1\)PhiX is a small, ready-to-use Illumina library with balanced nucleotide representation.
b. Set the unopened package aside at room temperature for 10–15 minutes to prevent condensation when removing the flow cell from the package. Preparing the flow cell now ensures that it reaches room temperature on time.

2. If using the refrigerator thaw method:
 a. Remove thawed cartridge from 2°C to 8°C storage.
 b. Set the unopened cartridge aside at room temperature for at least 15 minutes before sequencing. Do not exceed 2 hours.

Dilute Library to 2 nM

1. Remove Resuspension Buffer (RSB) from -25°C to -15°C storage. Alternatively, use 10 mM Tris-HCl with 0.1% tween 20, pH 8.5 in place of RSB.
 PhiX is needed only for an optional spike-in or a PhiX-only run.
3. Thaw RSB at room temperature for 20 minutes.
4. [Optional] Thaw PhiX at room temperature for 5 minutes, and then quantify using a fluorescence-based method, such as Qubit, to confirm PhiX concentration.
 If quantification is not possible, proceed with 10nM concentration.
5. Vortex library or PhiX briefly, and then centrifuge at 280 × g for 1 minute.
6. Using RSB as diluent, prepare at least 24 µl 2 nM library in a low-bind microtube.
 ForPhiX spike-in instructions, see Add a PhiX Control (Optional) on page 29.
7. Vortex briefly, and then centrifuge at 280 × g for 1 minute.

Dilute 2 nM Library to Loading Concentration

1. Combine the following volumes in a low-bind microtube to prepare 24 µl library diluted to the appropriate loading concentration:

<table>
<thead>
<tr>
<th>Library Type*</th>
<th>Loading Concentration (pM)</th>
<th>2 nM Library Volume (µl)</th>
<th>RSB Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampliseq for Illumina Library PLUS</td>
<td>750</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Illumina DNA Prep</td>
<td>750</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Illumina DNA Prep with Enrichment</td>
<td>1000</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>100 % PhiX</td>
<td>650</td>
<td>7.8</td>
<td>16.2</td>
</tr>
<tr>
<td>TruSeq DNA Nano 350</td>
<td>1200</td>
<td>14.4</td>
<td>9.6</td>
</tr>
<tr>
<td>TruSeq DNA Nano 550</td>
<td>1500</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>TruSeq Stranded mRNA</td>
<td>1000</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

* For unlisted library types, start with a loading concentration of 650 pM and optimize over subsequent runs.
This table provides example loading concentrations. The NextSeq 2000 is compatible with all Illumina library preparation kits except those that require custom sequencing primers, but the optimal loading concentration can vary.
2. Vortex briefly, and then centrifuge at 280 × g for 1 minute.
3. Set aside diluted library on ice until ready for sequencing.
 Sequence libraries diluted to the loading concentration the same day they are diluted.
4. Proceed as follows.
 • If adding PhiX, see Add a PhiX Control (Optional) on page 29.
 • If not adding PhiX or are performing a PhiX-only run, see Load Consumables Into the Cartridge on page 29.

Add a PhiX Control (Optional)

1. Combine the following volumes in a low-bind microtube to prepare 20 µl 1 nM PhiX:
 • 10 nM PhiX (2 µl)
 • RSB (18 µl)
2. Vortex briefly, and then centrifuge at 280 × g for 1 minute.
3. Add 1 µl 1 nM PhiX to 24 µl library diluted to the final loading concentration.
 These volumes result in a ~2% PhiX spike-in. Actual percentage varies depending on library quality and quantity.
4. Set aside the library with PhiX spike-in on ice until ready for sequencing.
 Sequence libraries with PhiX spike-in the same day they are diluted.

Load Consumables Into the Cartridge

This step prepares the cartridge for sequencing by mixing the prefilled reagents and loading diluted libraries and the flow cell.

Prepare the Cartridge

1. Open the cartridge bag by tearing or cutting with scissors from the top notch on either side.
2. Remove the cartridge from the bag. Discard the bag and dessicant.
3. Invert the cartridge 10 times to mix reagents.
 Internal components can rattle during inversion, which is normal.

Load the Flow Cell

1. Open the silver foil package by tearing or cutting with scissors from the top slit on either side.
If unable to use the flow cell immediately, see *Return Consumables to Storage on page 53.*

2. Pull the flow cell out of the package.
 Set aside the foil package and desiccant in case you need to return the flow cell to storage. The desiccant is contained in a pouch at the bottom of the foil package. Discard them when sequencing begins.

3. Hold the flow cell by the gray tab with the label on the tab facing up.

4. Push to insert the flow cell into the slot on the front of the cartridge.
 An audible click indicates that the flow cell is in place. When properly loaded, gray tab protrudes from the cartridge.

5. Pull back and remove the gray tab to expose the flow cell. Recycle the tab.

Load Libraries

1. Using a new P1000 pipette tip, pierce the Library reservoir and push the foil to the edges to enlarge the hole.

2. Discard the pipette tip to prevent contamination.
3. Add 20 µl diluted library to the **bottom** of the reservoir by slowly lowering the pipette tip to the bottom of reservoir before dispensing. Avoid touching the foil.

Initiating a Sequencing Run

This step initiates a sequencing run in one of four modes:

- **Cloud mode**—Run is selected from a list of planned runs in NextSeq 1000/2000 Control Software. During sequencing, cBCL data are uploaded to BaseSpace Sequence Hub. After sequencing, DRAGEN in BaseSpace Sequence Hub starts automatically.

- **Hybrid mode**—Run is selected from a list of planned runs in NextSeq 1000/2000 Control Software. After sequencing, on-instrument analysis starts automatically. cBCL data and DRAGEN secondary analysis output files are stored in the selected output folder.

- **Local mode**—A sample sheet in v2 file format is manually imported into NextSeq 1000/2000 Control Software. After sequencing, on-instrument analysis starts automatically. cBCL data and DRAGEN secondary analysis output files are stored in the selected output folder. If Proactive, Run Monitoring and Storage is selected, analysis can also be initiated through BaseSpace Sequence Hub apps after sequencing completion.

- **Standalone mode**—Set up a run, following the instructions in NextSeq 1000/2000 Control Software to generate cBCL data.

⚠️ Opening the visor during the pre-run check or the run can cause run failure.

⚠️ Keep hands clear of instrument during visor opening and closing to avoid injury.

Initiating a Cloud or Hybrid Run

1. Configure the run mode, as described in *Configure Run Mode on page 13*.
2. Select **Start**.
3. Enter your BaseSpace Sequence Hub sign in credentials, and then select **Sign In**.
4. If you selected Proactive, Run Monitoring and Storage, select the Workgroup containing your run created in Instrument Run Setup in BaseSpace Sequence Hub.

⚠️ A workgroup selection is required to avoid errors. Make sure you have selected a workgroup before proceeding.

5. Select Next.

6. Select your run.

7. Confirm the Analysis, Run Length, and Secondary Analysis version matches the correct run. Analysis displays Cloud_ to indicate that analysis occurs in BaseSpace Sequence Hub.

8. Select Review.

9. [Optional] To change the output folder, select the Output Folder field and enter a new location. The Output Folder field is auto-populated from your default settings and is required unless Proactive, Run Monitoring and Storage is selected.

 If you selected Proactive, Run Monitoring and Storage, Save to BaseSpace Sequence Hub displays Enabled.

 If you selected Proactive and Run Monitoring, Save to BaseSpace Sequence Hub displays Disabled.

10. Review your run information, and then select Prep.

Initiating a Local Run

1. Configure the run mode, as described in Configure Run Mode on page 13.

2. Select Start.

3. If you selected Proactive, Run Monitoring and Storage or Proactive and Run Monitoring, enter your BaseSpace Sequence Hub sign in credentials, and then select Sign In.

4. If you selected Proactive, Run Monitoring and Storage, select the BaseSpace Sequence Hub Workgroup to save your run in, and then select Next.

⚠️ A workgroup selection is required to avoid errors. Make sure you have selected a workgroup before proceeding.

5. Select Choose... under Start With Sample Sheet, and navigate to the sample sheet in v2 formatting on the NextSeq 2000 instrument, portable drive, or mounted network drive. Sample sheet file names cannot contain special characters.
 • Instrument Run Setup Used—Select the .zip folder containing the sample sheet v2 and supporting files if applicable. Otherwise, select the sample sheet v2.
 • Instrument Run Setup Not Used—Make sure the secondary analysis supporting file is located in the same directory as the sample sheet v2.

ℹ️ The selected sample sheet must be in v2 formatting. To create a sample sheet v2, download the generated sample sheet from Instrument Run Setup in BaseSpace Sequence Hub or edit a sample sheet v2 template provided on the NextSeq 2000 support page. See Sample Sheet v2 Settings on page 57 for more information on sample sheet v2 formatting and requirements.

6. Select Review.

7. Review your run information, and then select Prep.

8. [Optional] To change the output folder, select the Output Folder field and enter a new location.
The Output Folder field is auto-populated from your default settings and is required unless Proactive, Run Monitoring and Storage is selected.

If you selected Proactive, Run Monitoring and Storage, Save to BaseSpace Sequence Hub will display Enabled.

If you selected Proactive and Run Monitoring, Save to BaseSpace Sequence Hub displays Disabled.

Initiating a Standalone Run

1. Configure the run mode, as described in Configure Run Mode on page 13.
2. Select Start.
3. If you selected Proactive, Run Monitoring and Storage or Proactive and Run Monitoring, enter your BaseSpace Sequence Hub sign in credentials, and then select Sign In.
4. If you selected Proactive, Run Monitoring and Storage, select the BaseSpace Sequence Hub Workgroup to save your run in, and then select Next.
6. In the Run Name field, enter a unique name of your preference to identify the current run. The run name can contain alphanumeric characters, dashes, hyphens, and underscores.
7. For Read Type, select how many sequencing reads to perform:
 - **Single Read**—Perform one read, which is the simpler, faster option.
 - **Paired End**—Perform two reads, the consensus of which generates higher-quality data and provides more accurate alignment.
8. Enter the number of cycles performed in each read:
 - There is no maximum number of index cycles, but the sum of the read cycles and index cycles must be less than the number of cycles indicated on the cartridge label plus 27.
 - **Read 1**—Enter 1–151 cycles.
 - **Index 1**—Enter the number of cycles for the Index 1 (i7) primer. For a PhiX-only run, enter 0 in both index fields.
 - **Index 2**—Enter the number of cycles for the Index 2 (i5) primer.
 - **Read 2**—Enter up to 151 cycles. This value is typically the same as the Read 1 value.
9. If you selected Proactive, Run Monitoring and Storage, select Choose... to import a sample sheet.

 - The selected sample sheet must be in v2 formatting. To create a sample sheet v2, download the generated sample sheet from Instrument Run Setup in BaseSpace Sequence Hub or edit a sample sheet v2 template provided on the NextSeq 2000 support page. See Sample Sheet v2 Settings on page 57 for more information on sample sheet v2 formatting and requirements.
10. [Optional] To change the output folder, select the Output Folder field and enter a new location. The Output Folder field is auto-populated from your default settings and is required unless Proactive, Run Monitoring and Storage is selected.
11. Select Prep.

Load the Consumables Onto the Instrument

1. Make sure that the cartridge was previously thawed and inverted 10 times to mix prior to loading the flow cell (gray tab removed) and diluted library.
2. Select Load.
The NextSeq 1000/2000 Control Software opens the visor and ejects the tray.

3. Place the cartridge onto the tray with the label facing up and the flow cell inside the instrument. Push cartridge in until it locks into seat.

4. Select Close to retract the cartridge and close the visor.
 The NextSeq 1000/2000 Control Software displays information from the scanned consumables after 2 minutes.

5. [Optional] Select Eject Cartridge to remove the cartridge.
 The visor opens after 1 minute and ejects the cartridge.

6. Select Sequence.

Pre-Run Checks

Pre-run checks include an instrument check followed by a fluidics check. The fluidics check pierces the cartridge seals, which will cause 3-4 popping sounds to emit from the instrument. This is expected. The reagent is now passed through the flow cell.

⚠️ Consumables cannot be reused once the fluidics check starts.

1. Wait about 15 minutes for pre-run checks to complete.
 The run starts automatically after successful completion.

2. If an error occurs during the instrument check, select Retry to redo the check.
 When a check is in progress, the circle for that check is animated.

3. To troubleshoot recurring errors, see Error Message Resolution on page 53.

Monitor Run Progress

1. Monitor run progress and metrics as they appear on the Sequencing screen.
 - Estimated run completion—The approximate date and time of run completion. The estimated run completion metric requires 10 previous runs to calculate accurate run completion time.
 - Average %Q30—The average percentage of base calls with a Q-score ≥ 30.
 - Projected Yield—The expected number of bases called for the run.
 - Total Reads PF—The number of paired end (if applicable) clusters passing filtering (in millions).
 - Real Time Demux—Status of demultiplexing when initiated at the beginning of Read 2 following completion of Read 1, Index 1, and Index 2 cycles. Status will display Complete even if index cycles are not performed. Not available for Cloud mode runs.
• **Real Time Alignment**—Status of Read 1 alignment when initiated at the beginning of Read 2 following completion of Read 1, Index 1, and Index 2 cycles. Not available for Cloud mode runs. Q30 and yield metrics appear after cycle 26 (~6 hours after starting the run).

2. To monitor run processes, select the control software menu, and then select **Process Management**.
3. To cancel a run, select **End Run**. See *Cancel a Run on page 54* for more information on canceling runs.

Unload Consumables

1. When sequencing is complete, select **Eject Cartridge**.
 The software ejects the used cartridge from the instrument.
2. Remove the cartridge from the tray.
3. Remove the flow cell from the cartridge.
 Flow cell disassembly instructions for recycling are currently not available.
4. Dispose of the flow cell, which has electronic components, in accordance with applicable standards for your region.
5. [Optional] Remove the drainage plug under the Illumina logo on the side of the cartridge over an appropriate area (ie, sink or hazardous liquid waste receptacle) with the plug facing horizontal or downward away from your face. Drain used reagents in accordance with applicable standards for your region. Drain time depends on the cartridge size if automatic reagent purge is not enabled.

 ![Warning]
 This set of reagents contains potentially hazardous chemicals. Personal injury can occur through inhalation, ingestion, skin contact, and eye contact. Wear protective equipment, including eye protection, gloves, and laboratory coat appropriate for risk of exposure. Handle used reagents as chemical waste and discard in accordance with applicable regional, national, and local laws and regulations. For additional environmental, health, and safety information, see the SDS at support.illumina.com/sds.html.

6. Dispose of the cartridge, which may contain unused reagents, in accordance with applicable standards for your region.
 Cartridge disassembly instructions for recycling are currently not available.
 A post-run wash is not necessary because fluidics are discarded with the cartridge.
7. Select **Close Door** to reload the tray and return to the Home screen.
 The software automatically reloads the tray and sensors confirm cartridge removal.
Sequencing Output

This section describes the Real-Time Analysis software, which performs base calling, assigns quality scores, and outputs data. Learn about the different output file types and where to locate them after a run.

Real-Time Analysis Overview

The NextSeq 2000 Sequencing System runs RTA3, an implementation of Real-Time Analysis software, on the instrument Compute Engine (CE). RTA3 extracts intensities from images received from the camera, performs base calling, assigns a quality score to base calls, aligns to PhiX, and reports data in InterOp files for viewing in the Instrument Control Software.

To optimize processing time, RTA3 stores information in memory. If RTA3 is terminated, processing does not resume and any run data being processed in memory is lost.

RTA3 Inputs

RTA3 requires tile images contained in local system memory for processing. RTA3 receives run information and commands from the control software.

RTA3 Outputs

Images for each color channel are passed in memory to RTA3 as tiles. From these images, RTA3 outputs a set of quality-scored base call files and filter files. All other outputs are supporting output files.

<table>
<thead>
<tr>
<th>File Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base call files</td>
<td>Each tile that is analyzed is included in a concatenated base call (*.cbcl) file. Tiles from the same lane and surface are aggregated into 1 *.cbcl file for each lane and surface.</td>
</tr>
<tr>
<td>Filter files</td>
<td>Each tile produces a filter file (*.filter) that specifies whether a cluster passes filters.</td>
</tr>
<tr>
<td>Cluster location files</td>
<td>Cluster location (*.locs) files contain the X,Y coordinates for every cluster in a tile. A cluster location file is generated for each run.</td>
</tr>
</tbody>
</table>

Output files are used for downstream analysis in DRAGEN and BaseSpace Sequence Hub.

Error Handling

RTA3 creates log files and writes them to the Logs folder. Errors are recorded in a text file in *.log file format.

The following log files are transferred to the final output destination at the end of processing:

- `info_00000.log` summarizes important run events.
- `error_00000.log` lists errors that occurred during a run.
- `warning_00000.log` lists warnings that occurred during a run.
Flow Cell Tiles

Tiles are small imaging areas on the flow cell. The camera takes one image per tile.
The NextSeq 1000/2000 P2 Flow Cell has a total of 132 tiles.

Table 5 Flow Cell Tiles

<table>
<thead>
<tr>
<th>Flow Cell Component</th>
<th>NextSeq 1000/2000 P2 Flow Cell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanes</td>
<td>1</td>
<td>A lane is a physical channel with input and output ports.</td>
</tr>
<tr>
<td>Surfaces</td>
<td>2</td>
<td>The P2 flow cells are imaged on two surfaces: the top and bottom. The top surface of a tile is imaged first.</td>
</tr>
<tr>
<td>Swaths per lane</td>
<td>6</td>
<td>A swath is a column in a flow cell lane.</td>
</tr>
<tr>
<td>Tiles per swath</td>
<td>11</td>
<td>A tile is a portion of a swath and depicts an imaged area on the flow cell.</td>
</tr>
<tr>
<td>Total tiles generated</td>
<td>132</td>
<td>Lanes \times surfaces \times swaths \times tiles per swath equals the total number of tiles.</td>
</tr>
</tbody>
</table>

Tile Naming

The tile name is a four-digit number that represents the tile position on the flow cell. For example, tile name 1205 indicates top surface, swath 2, tile 05.
The first digit represents the surface: 1 for top or 2 for bottom.
The second digit represents the swath number: 1, 2, 3, 4, 5, or 6.
The last two digits represent the tile number. For swath numbers 1-4, the numbering starts with 01 at the outlet end of the flow cell through 11 at the inlet end. For swath numbers 5-6, the numbering starts with 01 at the inlet end and 11 at the outlet end.
Real-Time Analysis Workflow

Registration
Records the location of each cluster on the patterned flow cell.

Intensity extraction
Determines an intensity value for each cluster.

Phasing correction
Corrects the effects of phasing and prephasing.

Base calling
Determines a base call for every cluster.

Quality scoring
Assigns a quality score to every base call.

Registration
Registration aligns an image to the rotated square array of nanowells on the patterned flow cell. Because of the ordered arrangement of nanowells, the X and Y coordinates for each cluster in a tile are predetermined. Cluster positions are written to a cluster location (s.locs) file for each run. If registration fails for any images in a cycle, no base calls are generated for that tile in that cycle. Use Sequencing Analysis Viewer to identify which images failed registration.

Intensity Extraction
After registration, intensity extraction calculates an intensity value for each nanowell in a given image. If registration failed, the intensity for that tile cannot be extracted.

Phasing Correction
During the sequencing reaction, each DNA strand in a cluster extends by one base per cycle. Phasing and prephasing occurs when a strand becomes out of phase with the current incorporation cycle.

Phasing occurs when a base falls behind.
Prephasing occurs when a base jumps ahead.

Figure 5 Phasing and Prephasing

A. Read with a base that is phasing
B. Read with a base that is prephasing.

RTA3 corrects the effects of phasing and prephasing, which maximizes the data quality at every cycle throughout the run.
Base Calling

Base calling determines a base (A, C, G, or T) for every cluster of a given tile at a specific cycle. The NextSeq 2000 Sequencing System uses two-channel sequencing, which requires only two images to encode the data for four DNA bases, one from the green channel and one from the blue channel.

A no call is identified as N. No calls occur when a cluster does not pass filter, registration fails, or a cluster is shifted off the image.

Intensities for each cluster are extracted from the green and blue images and compared against each other, which results in four distinct populations. Each population corresponds to a base. The base calling process determines which population each cluster belongs to.

Table 6 Base Calls in 2-Channel Sequencing

<table>
<thead>
<tr>
<th>Base</th>
<th>Green Channel</th>
<th>Blue Channel</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 (present)</td>
<td>1 (present)</td>
<td>Clusters that show intensity in both the green and blue channels.</td>
</tr>
<tr>
<td>C</td>
<td>0 (not present)</td>
<td>1 (present)</td>
<td>Clusters that show intensity in the blue channel only.</td>
</tr>
<tr>
<td>G</td>
<td>0 (not present)</td>
<td>0 (not present)</td>
<td>Clusters that show no intensity at a known cluster location.</td>
</tr>
<tr>
<td>T</td>
<td>1 (present)</td>
<td>0 (not present)</td>
<td>Clusters that show intensity in the green channel only.</td>
</tr>
</tbody>
</table>
The color of each cluster correlates to the %Base plots in Sequence Analysis Viewer (SAV) and BaseSpace Sequence Hub Run Data by Cycle and are not meant to correlate with the green and blue channel.

Clusters Passing Filter

During the run, RTA3 filters raw data to remove reads that do not meet the data quality threshold. Overlapping and low-quality clusters are removed.

For two-channel analysis, RTA3 uses a population-based system to determine the chastity (intensity purity measurement) of a base call. Clusters pass filter (PF) when no more than one base call in the first 25 cycles has a chastity below a fixed threshold. When included, PhiX alignment is performed at cycle 26 on a subset of tiles for clusters that passed filter. Clusters that do not pass filter are not base called and not aligned.

Quality Scores

A quality score (Q-score) is a prediction of the probability of an incorrect base call. A higher Q-score implies that a base call is higher quality and more likely to be correct. After the Q-score is determined, results are recorded in base call (*.cbcl) files.

The Q-score succinctly communicates small error probabilities. Quality scores are represented as Q(X), where X is the score. The following table shows the relationship between a quality score and error probability.

<table>
<thead>
<tr>
<th>Q-Score Q(X)</th>
<th>Error Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q40</td>
<td>0.0001 (1 in 10,000)</td>
</tr>
<tr>
<td>Q30</td>
<td>0.001 (1 in 1000)</td>
</tr>
<tr>
<td>Q20</td>
<td>0.01 (1 in 100)</td>
</tr>
<tr>
<td>Q10</td>
<td>0.1 (1 in 10)</td>
</tr>
</tbody>
</table>
Quality Scoring and Reporting

Quality scoring calculates a set of predictors for each base call, and then uses the predictor values to look up the Q-score in a quality table. Quality tables are created to provide optimally accurate quality predictions for runs generated by a specific configuration of sequencing platform and version of chemistry.

Quality scoring is based on a modified version of the Phred algorithm.

To generate the Q-table for the NextSeq 2000 Sequencing System, three groups of base calls were determined, based on the clustering of these specific predictive features. Following grouping of the base calls, the mean error rate was empirically calculated for each of the three groups and the corresponding Q-scores were recorded in the Q-table alongside the predictive features correlating to that group. As such, only three Q-scores are possible with RTA3 and these Q-scores represent the average error rate of the group (Figure 7). Overall, this results in simplified, yet highly accurate quality scoring. The three groups in the quality table correspond to marginal (< Q15), medium (~Q20), and high-quality (> Q30) base calls, and are assigned the specific scores of 12, 23, and 37 respectively. Additionally, a null score of 2 is assigned to any no-calls. This Q-score reporting model reduces storage space and bandwidth requirements without affecting accuracy or performance.

Figure 7 Simplified Q-Scoring with RTA3

```
RTA3

Sequence data
CAGAACCTGACCCGAACCTGACC
TGGCATTCCATTGGCATTCCCA
TAGCATCATGATAGCATGATGAT
GAGTCACATCAAGTCACAGTC

Q-table

<table>
<thead>
<tr>
<th>Metric 1</th>
<th>Metric 2</th>
<th>Metric 3</th>
<th>Metric 4</th>
<th>Metric 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td>962</td>
<td>915</td>
<td>0.5</td>
<td>0.9</td>
<td>0</td>
</tr>
<tr>
<td>2125</td>
<td>2176</td>
<td>0.05</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>3256</td>
<td>3309</td>
<td>0.06</td>
<td>0.07</td>
<td>1</td>
</tr>
</tbody>
</table>

Q-scores

2 | 12 | 23 | 37
```
Sequencing Output Files

<table>
<thead>
<tr>
<th>File Type</th>
<th>File Description, Location, and Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concatenated Base call files</td>
<td>Each cluster analyzed is included in a concatenated base call file, aggregated in one file per cycle, lane, and surface. The aggregated file contains the concatenated base call and encoded quality score for every cluster. The concatenated base call files are used by BaseSpace Sequence Hub or bcl2fastq2. Data/Intensities/BaseCalls/L001/C1.1 L[lane]_[surface].cbcl, for example L001_1.cbcl</td>
</tr>
<tr>
<td>Cluster location files</td>
<td>For each flow cell, a binary cluster location file contains the XY coordinates for clusters in a tile. A hexagonal layout that matches the nanowell layout of the flow cell predefines the coordinates. Data/Intensities s_[lane].locs</td>
</tr>
<tr>
<td>Filter files</td>
<td>The filter file specifies whether a cluster passed filters. Filter files are generated at cycle 26 using 25 cycles of data. For each tile, one filter file is generated. Data/Intensities/BaseCalls/L001 s_[lane]_[tile].filter</td>
</tr>
<tr>
<td>InterOp files</td>
<td>Binary reporting files can be viewed on-instrument with the Instrument Control Software or off-instrument in SAV or BaseSpace Hub. InterOp files are updated throughout the run. InterOp folder</td>
</tr>
<tr>
<td>Run information file</td>
<td>Lists the run name, number of cycles in each read, whether the read is an Index Read, and the number of swaths and tiles on the flow cell. The run info file is created at the beginning of the run. [Root folder],RunInfo.xml</td>
</tr>
</tbody>
</table>

DRAGEN Secondary Analysis Output Files

The DRAGEN Bio-IT Platform analyzes your sequencing output on-instrument further by using one of the following analysis pipelines.

- BCL Convert
- Germline
- RNA
- Enrichment

This section provides information on each DRAGEN pipeline, including output file information. In addition to generating files specific to each pipeline, DRAGEN provides metrics from the analysis in a <sample_name>.metrics.json file and the reports described in DRAGEN BCL Convert Pipeline on page 44.

Output file considerations:

- FASTQ files are only generated when using the BCL Convert pipeline running on-instrument analysis. Other pipelines do not generate FASTQ files. FASTQ files will not be uploaded to BaseSpace Sequence Hub if Proactive, Run Monitoring and Storage is selected.
- For Germline, RNA, and Enrichment pipelines running on-instrument analysis, BAM files will not be uploaded to BaseSpace Sequence Hub if Proactive, Run Monitoring and Storage is selected.
DRAGEN Enrichment Pipeline

The DRAGEN Enrichment pipeline supports small variant calling and structural variant calling. To perform variant calling, a *.bed file must be included in the sample sheet or specified in the Instrument Run Setup on BaseSpace Sequence Hub. Structural variant calling is only generated for paired-end reads.

The pipeline generates the following output files.

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Output File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping/aligning</td>
<td>BAM or CRAM</td>
<td>• <sample_name>.bam, or <sample_name>.cram</td>
</tr>
<tr>
<td>Small variant calling</td>
<td>VCF and gVCF</td>
<td>• <sample_name>.hard-filtered.gvcf.gz</td>
</tr>
<tr>
<td>Structural variant calling</td>
<td>VCF</td>
<td>• <sample_name>.sv.vcf.gz</td>
</tr>
</tbody>
</table>

DRAGEN Germline Pipeline

The DRAGEN Germline pipeline supports the following features:

- Small variant calling
- Structural variant calling for paired-end reads
- Copy number variant calling for human genomes
- Repeat expansions for human genomes
- Regions of homozygosity for human genomes

Structural variant calling is only generated for paired-end reads.

The pipeline generates the following output files.

<table>
<thead>
<tr>
<th>Component</th>
<th>Type</th>
<th>Output File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping/aligning</td>
<td>BAM or CRAM</td>
<td>• <sample_name>.bam, or <sample_name>.cram</td>
</tr>
<tr>
<td>Small variant calling</td>
<td>VCF and gVCF</td>
<td>• <sample_name>.hard-filtered.gvcf.gz</td>
</tr>
<tr>
<td>Structural variant caller</td>
<td>VCF</td>
<td>• <sample_name>.sv.vcf.gz</td>
</tr>
<tr>
<td>Copy number variants</td>
<td>VCF</td>
<td>• <sample_name>.cnv.vcf.gz</td>
</tr>
<tr>
<td>Repeat expansion</td>
<td>VCF</td>
<td>• <sample_name>.repeats.vcf.gz</td>
</tr>
<tr>
<td>Regions of Homozygosity</td>
<td>CSV and BED</td>
<td>• <sample_name>.roh_metrics.csv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <sample_name>.roh.bed</td>
</tr>
</tbody>
</table>

DRAGEN RNA Pipeline

The DRAGEN RNA pipeline supports gene fusion detection and transcript quantification. To generate output files, specify a GTF file in the sample sheet or make sure the default genes.gtf.gz exists with the reference genome.

The pipeline generates the following output files.
### Component	Type	Output File Name	Description
Mapping/aligning | BAM or CRAM | • `<sample_name>.bam`, or • `<sample_name>.cram` | Alignment output meeting SAM specifications.
Gene fusion detection | Plain text | • `<sample_name>.fusion_candidates.preliminary` • `<sample_name>.fusion_candidates.final` | • Fusion candidates before filters are applied. • Fusion candidates after filters are applied.
Transcript quantification | Plain text | • `sample_name.quant.genes.sf` • `sample_name.quant.sf` | • Transcript quantification results at the gene level. • All transcript quantification results.

DRAGEN BCL Convert Pipeline

The DRAGEN BCL Convert pipeline uses BCL data generated from your sequencing run and sample sheet information to output a FASTQ file for each sample. The FASTQ file name is `<sample_name>.fastq.gz`.

The pipeline generates the following reports.

### Component	Type	Output File Name
Demultiplexing | CSV | • `Demultiplex_Stats.csv`
Adapter metrics | CSV | • `Adapter_Metrics.csv`
Index hopping | CSV | • `Index_Hopping_Counts.csv`
Top unknown barcodes | CSV | • `Top_Unknown_Barcodes.csv`

Demultiplexing Statistics Report

The demultiplexing statistics report contains information on the number of passing filter reads that are assigned to each sample in the sample sheet. Any reads not clearly associated with a sample are classified as undetermined. The report also includes information about the quality scores of bases in the passing filter (PF) reads assigned to each sample.

The following information is included.
Adapter Metrics Reports

The adapter metrics file contains the number of adapter and sample bases associated with each read. The following information is included.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane</td>
<td>The lane on the flow cell the sample was sequenced.</td>
</tr>
<tr>
<td>Sample_ID</td>
<td>The sample ID from the sample sheet. If a read does not correspond with a sample, the field displays undetermined.</td>
</tr>
<tr>
<td>Index</td>
<td>The concatenation of Index Read 1 and Index Read 2 from the sample sheet separated by a hyphen. If a read does not correspond to a sample, the field displays undetermined.</td>
</tr>
<tr>
<td># Reads</td>
<td>The number of PF reads demultiplexed for the sample in the specified lane.</td>
</tr>
<tr>
<td># Perfect Index Reads</td>
<td>Number of reads with a perfect match to the combined index sequences specified in the sample sheet.</td>
</tr>
<tr>
<td># One Mismatch Index Reads</td>
<td>Number of reads with one error in the combined index sequences specified in the sample sheet.</td>
</tr>
<tr>
<td># of ≥ Q30 Bases (PF)</td>
<td>Number of bases, including adapters, corresponding to reads that pass a Q30 quality threshold.</td>
</tr>
<tr>
<td>Mean Quality Score (PF)</td>
<td>The mean quality score for reads corresponding to the sample in the specified lane. The value includes adapter bases.</td>
</tr>
</tbody>
</table>

Adapter Metrics Reports

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane</td>
<td>The lane on the flow cell the sample was sequenced.</td>
</tr>
<tr>
<td>Sample_ID</td>
<td>The sample ID from the sample sheet. If a read does not correspond with a sample, the field displays undetermined.</td>
</tr>
<tr>
<td>index</td>
<td>The index1 sequence from the sample sheet. The field is empty if the index was not specified in the sample sheet or the sample ID value is undetermined.</td>
</tr>
<tr>
<td>index2</td>
<td>The index2 sequence from the sample sheet. The field is empty if index2 was not specified in the sample sheet or the sample ID value is undetermined.</td>
</tr>
<tr>
<td>R1_AdapterBases</td>
<td>Number of bases corresponding to AdapterRead1 in the sample sheet.</td>
</tr>
<tr>
<td>R1_SampleBases</td>
<td>Number of trimmed or masked bases from Read 1 for the corresponding lane and sample.</td>
</tr>
<tr>
<td>R2_AdapterBases</td>
<td>Number of bases corresponding to AdapterRead2 in the sample sheet.</td>
</tr>
<tr>
<td>R2_SampleBases</td>
<td>Number of trimmed or masked bases from Read 2 for the corresponding lane and sample.</td>
</tr>
<tr>
<td># Reads</td>
<td>Number of reads for the sample in the specified lane.</td>
</tr>
</tbody>
</table>
Index Hopping Counts Report

The index hopping counts report contains the number of reads for each expected and hopped index for dual index runs. The report only includes unique dual indexes per lane where no barcode collision is detected in either index. To generate index-hopping metrics for a lane, every pair of entries within each index must have a hamming distance of at least 2N +1, where N represents the barcode mismatch tolerance specified for the index.

The following information is included.

For nonindex runs, single index runs, or lanes that do not contain unique dual indexes, the file contains only the headers.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane</td>
<td>The lane on the flow cell the sample was sequenced.</td>
</tr>
<tr>
<td># Reads</td>
<td>Number of reads for the sample in the specified lane.</td>
</tr>
<tr>
<td>SampleID</td>
<td>The sample ID from the sample sheet. If a read does not correspond with a sample, the field displays undetermined.</td>
</tr>
<tr>
<td>index</td>
<td>The index1 sequence from the sample sheet. The field is empty if a read is single-ended or the sample ID value is undetermined.</td>
</tr>
<tr>
<td>index2</td>
<td>The index2 sequence from the sample sheet. The field is empty if a read is single-ended or the sample ID value is undetermined.</td>
</tr>
</tbody>
</table>

Top Unknown Barcodes Report

The top unknown barcodes report contains the top 100 index or index pairs per lane that were not identified in the sample sheet according to the number of allowed mismatches. If there are multiple index values placed as the 100th highest index count entry, all index values with the same count are output as the 100th entry.

The following information is included:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane</td>
<td>The lane on the flow cell the sample was sequenced.</td>
</tr>
<tr>
<td>index</td>
<td>The sequence for each unknown index in index Read1. The field is empty if no unknown indexes are found.</td>
</tr>
<tr>
<td>index2</td>
<td>The sequence for each unknown index in index Read 2. If the run was single-read or there were no unknown indexes found, the field is empty.</td>
</tr>
<tr>
<td># Reads</td>
<td>Number of reads for the sample in the specified lane.</td>
</tr>
</tbody>
</table>

DRAGEN Secondary Analysis Output Folder Structure

By default, DRAGEN generates output files in the output folder selected in the Settings tab.

- *stderr_.txt
- *stdout_.txt
- dragen_prev_24_hrs.log
- SampleSheet.csv

Document # 1000000109376 v01

For Research Use Only. Not for use in diagnostic procedures.
Run input files (eg, BED, GTF files)

sample_name

- **enrich_caller, germline_seq, or rna_seq**
 - dragen_*.log
 - sample_name.*.metrics.csv
 - [DNA] sample_name.*.vcf.gz
 - [DNA] sample_name.*.gvcf.gz
 - sample_name.*.bam or sample_name.*.cram
 - Logs
 - [RNA] sample_name.fusion_candidates.filter_info
 - [RNA] sample_name.fusion_candidates.final
 - [RNA] sample_name.quant.genes.sf
 - [RNA] sample_name.quant.sf
 - sample_name.metrics.json

- **logs**
 - *.txt
 - *.csv

RunInstrumentAnalyticsMetrics

- **0001**
 - dataset.json
- **0002**
 - dataset.json

Reports

- Demultiplex_Stats.csv
- RunInfo.xml
- Trim_Metrics.csv
- fastq_list.csv
- SampleSheet.csv
- Index_Hopping_Counts.csv
- Top_UNKNOWN_Barcodes.csv
Files included:

- **Read1InstrumentAnalyticsMetrics**
 - 0001
 - dataset.json
 - 0002
 - dataset.json

- **Read1Metrics**
 - Demultiplex_Stats.csv
 - Trim_Metrics.csv
 - Index_Hopping_Counts.csv
Maintenance

This section describes the procedures necessary for maintaining a healthy system. Learn how to install software updates, change the air filter, and perform other periodic maintenance procedures. Keeping the control software up-to-date ensures that your system has the latest bug fixes and features installed for optimum performance.

Clear Hard Drive Space

A sequencing run requires about 200 GB of local hard drive space. A warning notification displays when space is low. Use the following steps to delete completed runs and clear space.

1. From the control software menu, select Disk Management. The Disk Management screen appears with a list of runs saved to the local hard drive.
2. For the run you want to delete, select Delete Run. Deleting a run deletes the local run folder. The output folder, which is a copy of the run folder, is retained.
3. In the dialog box, select Yes, Delete Run to confirm deleting the run.
4. Repeat steps 2 and 3 for each run you want to delete.
5. When you are finished, close Disk Management to return to the Home screen.

Software Updates

Updating the software ensures that your system has the latest features and fixes. Software updates are bundled into a system suite, which includes the following software:

- NextSeq 1000/2000 Control Software
- NextSeq 2000 recipes
- Universal Copy Service
- Real-Time Analysis

DRAGEN modules are not included in the system suite. Install them separately as needed. Access the DRAGEN module software from the support pages.

The system is configured to download software updates automatically or manually:

- **Automatic updates**—Updates are automatically downloaded from BaseSpace Sequence Hub for you to install. This option requires an internet connection, but not a BaseSpace Sequence Hub account.
- **Manual updates**—Updates are manually downloaded from the web, saved locally or to a portable drive, and installed from the saved location. This option does not require an internet connection for the instrument.

Install an Automatic Software Update

1. Log into ilmnadmin.
2. Make sure that there are no sequencing runs or on-instrument secondary analysis in progress.
3. Select **Software Update** from the control software menu. Systems configured for automatic updates display an alert when a software update is available.

4. To check for an update, select **Check Online for Software Update**.

5. Select **Update Now** to download the new version of software. When the download is complete, the control software is closed and the installation wizard appears. The control software automatically restarts. Any firmware update occurs automatically after the restart.

 - **Warning:** Canceling an update before installation is complete stops the update at the current point. Any changes made up to the cancellations point are reverted to the previous version or not installed.

Install a Manual Software Update

1. Log into ilmnadmin.
2. Make sure that there are no sequencing runs or on-instrument secondary analysis in progress.
3. When a software update is available, download the suite installer (*.tar.gz) from the **NextSeq 2000 Sequencing System support page**. Save the installer to a local or portable drive.
4. If you saved the installer to a portable drive, plug the drive into a USB 3.0 port, located on both the side and back of the instrument. Gently move the instrument as needed to access the back.
5. In the control software, select **Software Update** from the control software menu.
6. Select **Choose...** to navigate to the installer.
7. Select **Update Now** to start installation. The control software displays a busy indicator during installation. The control software automatically restarts. Any firmware update occurs automatically after the restart.

 - **Warning:** Canceling an update before installation is complete stops the update at the current point. Any changes made up to the cancellations point are reverted to the previous version or not installed.

DRAGEN Pipeline and License Updates

Only system administrators can update DRAGEN pipelines and renew DRAGEN license.

Renew DRAGEN License Online

If the NextSeq 2000 Sequencing System is connected to the internet, update your DRAGEN Bio-IT Platform license as follows.

1. Contact Illumina Technical Support to obtain a new license key.
2. Wait 24 hours for the license to update automatically, or update the license immediately as follows.
 - a. Select the control software menu, and then select **DRAGEN**.
 - b. Select **Check Online** to check if a new DRAGEN license key is available.
 - c. If available, select **Update**.

Renew DRAGEN License Offline

If the NextSeq 2000 Sequencing System is not connected to the internet, update your DRAGEN Bio-IT Platform license as follows.
1. Contact Illumina Technical Support to obtain a new license key. Save the `license.zip` file to a local or portable drive.

2. If you saved the `*.zip` file to a portable drive, plug the drive into a USB 3.0 port, located on both the side and back of the instrument. Gently move the instrument as needed to access the back.

3. Select the control software menu, and then select DRAGEN.

4. Select **Choose** to navigate to the `*.zip` file, and then select **Open**.

Install Pipeline Updates

1. When a pipeline update is available, download the installer (`*.tar.gz`) from the DRAGEN support page. Save the installer to a local or portable drive.

2. If you saved the installer to a portable drive, plug the drive into a USB 3.0 port, located on both the side and back of the instrument. Gently move the instrument as needed to access the back.

3. Select the control software menu, and then select **Process Management**.

4. Make sure that there are no sequencing runs or on-instrument secondary analysis in progress.

5. Select the control software menu, and then select DRAGEN.

7. Select **Install** to start installation.

8. Enter ilmnadmin for the system password, and then select **Authenticate**.

Replace the Air Filter

Use the following instructions to replace an expired air filter every 6 months.

The air filter is a single-use rectangular cartridge that covers the fan on the right side of the instrument. It ensures proper cooling and prevents debris from entering the system. The instrument is shipped with one air filter installed and one spare. Additional spares are included with a valid instrument service contract, or they can be purchased separately from Illumina.

1. On the top of the instrument, press the right side of the top panel to disengage, as shown in the following illustration.
2. Open the panel.

3. Press to release the air filter cartridge, remove from the center of the panel, and discard.

4. Insert a new air filter into the receptacle, and press to secure.

5. Close the top panel and press into place.

6. Return the instrument to the original placement.
Troubleshooting

This section provides step by step instructions for canceling a run, power cycling the instrument, and other troubleshooting procedures.

Error Message Resolution

This appendix provides detailed instructions for various troubleshooting steps. The following flowchart provides an overview on troubleshooting error messages that appear during initialization, run setup, or sequencing, and are not resolved with a retry.

Many errors can be resolved with a power cycle: turning off the instrument, and then restarting it.

Return Consumables to Storage

Use the following instructions to store a thawed cartridge and flow cell in the event of an instrument error during the instrument pre-run check prior to the fluids check.

1. Separate the flow cell from the cartridge.
2. Remove and discard diluted library from the reservoir (up to ~18 µl).

⚠️ Prepare a fresh dilution of the same library for the next run to avoid sample cross-contamination with residual library in the reservoir.
3. Position the cartridge in 2°C to 8°C storage so that the label faces up and air can circulate on all sides.
 Do not exceed 72 hours. If cartridge was thawed in the refrigerator for 12 hours overnight, do not exceed 60 hours.
4. Return the flow cell to the original silver foil packaging with the desiccant.
5. Tape the foil packaging shut and place in 2°C to 8°C storage.
 Do not exceed 72 hours.

Cancel a Run

1. Select **End Run**, and then select **Yes, end the sequencing run**.
 ![Tip] Canceling a run is final. The software cannot resume the run and consumables cannot be reused after the instrument check portion of pre-run checks.
2. Select **Eject Cartridge** to open the visor and eject the tray.
3. Remove the cartridge from the tray.
4. Store or dispose of the cartridge, depending on when the cancellation occurred:

<table>
<thead>
<tr>
<th>Circumstance</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>You canceled before or during the instrument pre-run check and want to reuse consumables.</td>
<td>See Return Consumables to Storage on page 53.</td>
</tr>
<tr>
<td>All other circumstances.</td>
<td>See Unload Consumables on page 35.</td>
</tr>
</tbody>
</table>
5. Select **Close Door** to reload the tray and return to the Home screen.
 Sensors confirm cartridge removal.

Requeue a Run

If an error displays for Status of Secondary Analysis in Process Management, you can requeue the run to perform on-instrument DRAGEN analysis again on the generated cBCL files. The original run folder must still be present on the instrument for requeue functionality. Using this requeue functionality does not requeue runs in BaseSpace Sequence Hub. To requeue in BaseSpace Sequence Hub, see Fix Sample Sheet in BaseSpace Sequence Hub Help Center.
1. Update your sample sheet v2, and then save the sample sheet to a portable or mounted network drive.
2. If you saved the sample sheet to a portable drive, plug the drive into a USB 3.0 port, located on both the side and back of the instrument. Gently move the instrument as needed to access the back.
3. Select the control software menu, and then select **Process Management**.
4. Make sure that there are no sequencing runs or on-instrument secondary analyses in progress.
5. Select **Requeue** next to the completed run to requeue.
6. Select **Choose** to navigate to the updated sample sheet, and then select **Open**.
7. Select **Start Requeue**.
Power Cycle the Instrument

Power cycling the instrument safely shuts down and restarts the system to restore a lost connection, align a specification, or resolve an initialization failure. Software messages indicate when to power cycle to resolve an error or warning.

1. From the control software menu, select **Shut Down Instrument**.
2. If the system does not shut down, hold the power button on the right side of the instrument until the lights fade.
3. When the power button pulses, press the power off (O) side of the toggle switch on the rear panel. The power button might continue to pulse after the power is turned off.

Figure 8 Toggle Switch Location

4. Wait 30 seconds.
5. Press the power on (I) side of the toggle switch.
6. When the power button pulses, press it.

Figure 9 Power Button Location

7. Wait about 5 minutes for the operating system to load. When the operating system is loaded, log on to the system.
 The control software is launched and initializes the system. Wait about 5 minutes for system initialization. The Home screen appears when initialization is complete.
Restore to Factory Settings

Restore the system to factory defaults to downgrade the software or recover from an undesirable configuration. This feature should only be used by an Illumina representative.

Capture Installed Image

Capture a system image to backup a successfully functioning software installation. This system image can be restored at a later point in time. It is recommended that you capture the system image immediately after completing the initial installation and changing your password with an Illumina representative.

1. Restart Linux.
2. When prompted to choose an operating system, select Capture Installed Image.
 The operating system options appear briefly before automatically proceeding with NextSeq 1000/2000 Control Software.
 Since only one image is retained in memory, this will overwrite the previously captured image.
3. Wait about 30 minutes for the system to capture the currently installed image.
 The capture can include several reboots. When complete, the system reboots with the currently installed image stored in memory.

Restore Captured Image

Restore the system to the previously captured image to recover from an undesirable configuration.

1. Restart Linux.
2. When prompted to choose an operating system, select Restore Installed Image.
 The operating system options appear briefly before automatically proceeding with NextSeq 1000/2000 Control Software.
 Passwords are tied to the system image. After restoration, use the restored image's password to log on to the system.
3. Wait about 30 minutes until restoration is complete.
 The restoration can include several reboots. When complete, the system reboots with the restored image.
Sample Sheet v2 Settings

If following Local mode, you can use the sample sheet v2 file format to configure your run settings. Create the sample sheet in Instrument Run Setup or by editing the NextSeq 2000 Sequencing System Sample Sheet v2 Template. When editing the sample sheet make sure that the following sections and fields are included in the order listed and meet the requirements. After editing, use a portable or mounted network drive to transfer the sample sheet to the NextSeq 2000 Sequencing System. When you navigate to the sample sheet in the control software, it is copied to a pre-run folder on the instrument so the portable drive can be removed.

If you are using DRAGEN, you will need to configure additional settings. For more information, see DRAGEN Sample Sheet Settings on page 59.

Download the sample sheet v2 template from the NextSeq 2000 Sequencing System support pages: NextSeq 2000 Sequencing System Sample Sheet v2 template.

File names cannot contain special characters.

[Header] Requirements

The [Header] section includes overall information on your run. The following are the available [Header] fields and descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FileFormatVersion</td>
<td>Yes</td>
<td>The sample sheet version. Enter 2 for the value.</td>
</tr>
<tr>
<td>RunName</td>
<td>No</td>
<td>Unique run name of your preference. The RunName can contain alphanumeric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>characters, underscores, dashes, and periods. If the RunName contains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spaces or special characters, analysis fails.</td>
</tr>
<tr>
<td>RunDescription</td>
<td>No</td>
<td>Description of the run.</td>
</tr>
<tr>
<td>InstrumentPlatform</td>
<td>No</td>
<td>NextSeq 1000/2000</td>
</tr>
<tr>
<td>InstrumentType</td>
<td>No</td>
<td>NextSeq 2000</td>
</tr>
</tbody>
</table>

[Reads] Requirements

The [Reads] section describes the number of sequencing cycles used for genomic and index read 1 and 2. The following are the available [Reads] fields and descriptions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read1Cycles</td>
<td>Yes</td>
<td>Number of cycles in the first read. Value must be a whole integer greater than zero.</td>
</tr>
<tr>
<td>Read2Cycles</td>
<td>No</td>
<td>Number of cycles in the second read.</td>
</tr>
<tr>
<td>Index1Cycles</td>
<td>No</td>
<td>Number of cycles in the first index read. Required when sequencing more than one sample. The maximum is 10 cycles.</td>
</tr>
<tr>
<td>Index2Cycles</td>
<td>No</td>
<td>Number of cycles in the second index read. The maximum is 10 cycles.</td>
</tr>
</tbody>
</table>

BCL Convert Requirements

The BCL convert sections provide information on converting your data from BCL to FASTQ. The BCL convert options includes two separate sections: [BCLConvert_Settings] and [BCLConvert_Data]. The BCL convert sections require information about index adapter sequences. To identify the compatible adapter sequence for each read and index, see **Illumina Adapter Sequences (document # 1000000002694)**.

The following are the available [BCLConvert_Settings] fields and descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftwareVersion</td>
<td>Yes</td>
<td>The version of the DRAGEN software currently installed on the system. Use all three integers included in the version name. For example, 3.5.7.</td>
</tr>
<tr>
<td>BarcodeMismatchesIndex1</td>
<td>No</td>
<td>The number of allowed mismatches between the first index read and index sequence. Values can be either 0, 1, or 2. The default value is 1.</td>
</tr>
<tr>
<td>BarcodeMismatchesIndex2</td>
<td>No</td>
<td>The number of allowed mismatches between the second index read and index sequence. Values can be either 0, 1, or 2. The default value is 1.</td>
</tr>
<tr>
<td>AdapterRead1</td>
<td>No</td>
<td>The sequence to trim or mask from the end of read 1. Read 1 adapter sequence containing A, C, G, or T. AdapterRead1 trims cycles by default.</td>
</tr>
<tr>
<td>AdapterRead2</td>
<td>No</td>
<td>The sequence to trim or mask from the end of read 2. Read 2 adapter sequence containing A, C, G, or T. AdapterRead2 trims cycles by default.</td>
</tr>
<tr>
<td>Field</td>
<td>Required</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| OverrideCycles | No | String used to specify UMI cycles and mask out cycles of a read. The following values are allowed:
• N—Specifies cycles to ignore.
• Y—Specifies sequencing cycles.
• I—Specifies index cycles.
• U—Specifies UMI cycles to be trimmed. Each element is separated by semicolons. The following are examples of OverrideCycles input.
U8Y143;I8;I8;U8Y143
N10Y66;I6;N10Y66 |

The following are the available [BCLConvert_Data] fields and descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample_ID</td>
<td>Yes</td>
<td>The ID of the sample. The sample ID can contain up to 20 alphanumeric characters, hyphens, and underscores. The ID is case sensitive. Separate each identifier with a dash or underscore. For example, Sample1-DQB1-022515.</td>
</tr>
<tr>
<td>Index</td>
<td>No</td>
<td>The index sequence associated with the sample. Only A, C, T, G are permitted. Required when sequencing more than one sample.</td>
</tr>
<tr>
<td>Index2</td>
<td>No</td>
<td>The second index sequence associated with the sample. Only A, C, T, G are permitted. Make sure the second index (i5) adapter sequences are in forward orientation. DRAGEN automatically reverse complements i5 indexes during secondary analysis.</td>
</tr>
<tr>
<td>Lane</td>
<td>No</td>
<td>The lane of the flow cell. Lanes are represented by one integer value.</td>
</tr>
</tbody>
</table>

DRAGEN Sample Sheet Settings

This section describes the sample sheet requirements for each DRAGEN pipeline. Add your DRAGEN pipeline settings as the last section on your sample sheet. You can only use one DRAGEN pipeline. For information on each pipeline, see *DRAGEN Secondary Analysis Output Files on page 42*.

Each DRAGEN pipeline includes separate sections for settings and data.

DRAGEN Germline Pipeline Requirements

The following are the available [DragenGermline_Settings] fields and descriptions.
SoftwareVersion
- **Required**: Yes
- **Description**: The version of the DRAGEN software currently installed on the system. Use all three integers included in the version name. For example, 3.5.7. The software version must match with the version specified in the BCLConvert_Settings section.

ReferenceGenomeDir
- **Required**: Yes
- **Description**: The reference genome name. For example, hg19_alt_aware. Use the name of the reference genome located in /usr/local/illumina/genomes. To use a custom reference genome, see Reference Builder for Illumina Instruments v1.0.0 App Online Help and Import Custom Reference Genomes on page 13.

MapAlignOutFormat
- **Required**: No
- **Description**: The formatting of the output file. Allowed values are bam or cram. If no value is specified, the default is none.

The following are the available [DragenGermline_Data] fields and descriptions.

Field
- **Required**: Yes
- **Description**: The ID of the sample. The sample ID can contain up to 20 alphanumeric characters. The ID is case sensitive. Separate each identifier with a dash. For example, Sample1-DQB1-022515. Sample IDs must match with the IDs specified in the BCLConvert_Data section.

DRAGEN RNA Pipeline Requirements

The following are the available [DragenRNA_Settings] fields and descriptions.
The following are the available [DragenRna_Data] fields and descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample_ID</td>
<td>Yes</td>
<td>The ID of the sample. The sample ID can contain up to 20 alphanumeric characters. The ID is case sensitive. Separate each identifier with a dash. For example, Sample1-DQB1-022515. Sample IDs must match with the IDs specified in the BCLConvert_Data section.</td>
</tr>
</tbody>
</table>

DRAGEN Enrichment Pipeline Requirements

The following are the available [DragenEnrichment_Settings] fields and descriptions.
<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SoftwareVersion</td>
<td>Yes</td>
<td>The version of the DRAGEN software currently installed on the system. Use all three integers included in the version name. For example, 3.5.7. The software version must match with the version specified in the BCLConvert_Settings section.</td>
</tr>
<tr>
<td>ReferenceGenomeDir</td>
<td>Yes</td>
<td>The reference genome name. For example, hg38_alt_aware. Reference genomes are located at /usr/local/illumina/genomes. To use a custom reference genome, see Reference Builder for Illumina Instruments v1.0.0 App Online Help and Import Custom Reference Genomes on page 13.</td>
</tr>
<tr>
<td>BedFile</td>
<td>Yes</td>
<td>The bed file containing the regions to target.</td>
</tr>
<tr>
<td>MapAlignOutFormat</td>
<td>No</td>
<td>The formatting of the output file. Allowed values are bam or cram. If no value is specified, the default is none.</td>
</tr>
</tbody>
</table>

The following are the available [DragenEnrichment_Data] fields and descriptions.

<table>
<thead>
<tr>
<th>Field</th>
<th>Required</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample_ID</td>
<td>Yes</td>
<td>The ID of the sample. The sample ID can contain up to 20 alphanumeric characters. The ID is case sensitive. Separate each identifier with a dash. For example, Sample1-DQB1-022515. Sample IDs must match with the IDs specified in the BCLConvert_Data section.</td>
</tr>
</tbody>
</table>
Index

% %PF 40

A
AC power
 inlet 3
air filters
 location 51
 spares 19
alcohol wipes 19
alerts 49
amplification 7
analysis
 methods 4, 7
audio settings 14
automatic updates 49

B
base call files 7, 36, 42
base calling 4
BaseSpace Sequence Hub 1
 documentation 9
 settings 9
BCL files 5
bcl2fastq2 36
bleach wipes 19

C
cameras 37
cartridge
 disposal 54
 loading orientation 33
 storing 54
catalog numbers 18
CBCL files 40
CE 36
chastity filter 40
cloud-based analysis 1
cluster intensities 38
cluster locations 36, 42
Compute Engine 36
computer name 4
consumables
 scanning 33
 tracking 1
consumables compartment 2
customer support 67
cycle numbers 22

D
data quality 40
default output folder 33
deleting runs 5, 49
denaturing 7
diluting libraries 7
disk space 5, 49
documentation 5, 49
domains 9
doors
 closing 33
downgrading software 56
drip tray
 pads 19
drive D 49

E
editing run parameters 33
electronic waste 54
ending runs 54
Enterprise subscription 9
error logs 36
errors 5, 55
 messages 53
 probability 40-41
Ethernet cable 3
Ethernet port 3
expiration dates 51
extra cycles 22

F
factory defaults 56
fans 51
FASTQ conversion 36
filter files 36, 42
filtering clusters 40
first time setup 51, 56
freezer specifications 19

G
green channel 39

H
hard drive 5, 49
help, technical 67
hosting location 9

I
icons 5
Illumina Proactive Support 10
image analysis 4
images 36
imaging 36-37
index
 cycles 22
initialization 55
 failure 55
installing software 49
instrument performance data 9
intensity values 38
internet connection 9
InterOp files 36, 42
IP address 4

K
keyboards 3
kits 18
 catalog numbers 19

L
lanes 37
libraries
 denaturing 7
 starting concentrations 28
 storing 1 nM 28
light bar 2
local analysis 1
Local Run Manager 4
log files 36
lost connections 55

M
manual software updates 49
mapped drives 33
monitor 2
mouse 3
moving 3

N
naming
 computer name 4
 instrument name 14
nanowells 38
NextSeq 1000/2000 Reagents 18
no calls 38-39
nucleotides 39

O
operating system 55
output folder 33, 49

P
pads 19
paired-end 33
passing filter (PF) 40
performance data 9
phasing and prephasing 38
PhiX 19
 alignment 36
PhiX Control v3 18
Phred algorithm 41
power button 2, 55
power cord 3
power cycling 53
private domain 9
Process Management 49

Q
Q-scores 40-41
quality tables 41

R
read cycles 22
read lengths 22
reagents
 disposal 54
rebooting 56
recipe fragments 4
recipes 49
red channel 39
refrigerator specifications 19
registration failures 38
resuming runs 54
Resuspension Buffer 18, 28
RSB substitute 18, 28
run count 4
run folder 49
run parameters
 editing 33
run setup
 examples 22
run size 49
run status 5
RunInfo.xml 42
runs
 metrics 36

S
sensors 54
Sequencing Analysis Viewer 36, 38
serial number 4
server location 9
shutting down 55
single-read 33
software
 downgrading 56
 installing 49
 update alerts 14
software suite 1, 4
sound settings 14
spares 51
specification alignment 55
starting concentrations 28
status bar 2
stopping runs 54
storing
 diluted libraries 28
support pages 49
surface numbering 37
swaths 37
system checks 53

System Suite installer 49

T
technical assistance 67
template generation 38
test kit 19
thumbnails 42
tile numbering 37
tiles 36
toggle switch 3, 55
tracking consumables 1
two-channel sequencing 39

U
UNC paths 33
Universal Copy Service 4, 49
USB ports 3

W
warnings 5, 55
warranty 19
white papers 41
Windows
 logon 55
Technical Assistance

For technical assistance, contact Illumina Technical Support.

Website: www.illumina.com
Email: techsupport@illumina.com

Illumina Customer Support Telephone Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Toll Free</th>
<th>Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>+1.800.809.4566</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>+1.800.775.688</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>+43 800006249</td>
<td>+43 19286540</td>
</tr>
<tr>
<td>Belgium</td>
<td>+32 80077160</td>
<td>+32 34002973</td>
</tr>
<tr>
<td>China</td>
<td>400.066.5835</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>+45 80820183</td>
<td>+45 89871156</td>
</tr>
<tr>
<td>Finland</td>
<td>+358 800918363</td>
<td>+358 974790110</td>
</tr>
<tr>
<td>France</td>
<td>+33 805102193</td>
<td>+33 170770446</td>
</tr>
<tr>
<td>Germany</td>
<td>+49 8001014940</td>
<td>+49 8938035677</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>800960230</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>+353 1800936608</td>
<td>+353 016950506</td>
</tr>
<tr>
<td>Italy</td>
<td>+39 800985513</td>
<td>+39 236003759</td>
</tr>
<tr>
<td>Japan</td>
<td>0800.111.5011</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>+31 800022493</td>
<td>+31 207132960</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0800.451.650</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>+47 800 16836</td>
<td>+47 21939693</td>
</tr>
<tr>
<td>Singapore</td>
<td>+1.800.579.2745</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>+34 911899417</td>
<td>+34 800300143</td>
</tr>
<tr>
<td>Sweden</td>
<td>+46 850619671</td>
<td>+46 200883979</td>
</tr>
<tr>
<td>Switzerland</td>
<td>+41 565800000</td>
<td>+41 800200442</td>
</tr>
<tr>
<td>Taiwan</td>
<td>00806651752</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>+44 8000126019</td>
<td>+44 2073057197</td>
</tr>
<tr>
<td>Other countries</td>
<td>+44.1799.534000</td>
<td></td>
</tr>
</tbody>
</table>

Safety data sheets (SDSs)—Available on the Illumina website at support.illumina.com/sds.html.
Product documentation—Available for download from support.illumina.com.
For Research Use Only. Not for use in diagnostic procedures.

© 2020 Illumina, Inc. All rights reserved.