NextSeq System

Denature and Dilute Libraries Guide

Overview 3
Consumables and Equipment 4
Protocol A: Standard Normalization Method 4
Protocol B: Bead-Based Normalization Method 6
Protocol C: AmpliSeq for Illumina Panels Normalization Method 7
Protocol D: AmpliSeq Library Equalizer for Illumina Normalization Method 9
Protocol E: TruSight Tumor 170 Library Denaturation and Dilution Method 11
Protocol F: TruSight Oncology 500 Library Denaturation and Dilution Method 12
Denature and Dilute PhiX Control (Protocols A–D) 13
Denature and Dilute PhiX Control (Protocol E) 15
Denature and Dilute PhiX Control (Protocol F) 16
Next Steps 18
Prepare PhiX for a Troubleshooting Run 18
Revision History 20
Technical Assistance 21

Document # 15048776 v09
December 2018
For Research Use Only. Not for use in diagnostic procedures.
This document and its contents are proprietary to Illumina, Inc. and its affiliates ("Illumina"), and are intended solely for the contractual use of its customer in connection with the use of the product(s) described herein and for no other purpose. This document and its contents shall not be used or distributed for any other purpose and/or otherwise communicated, disclosed, or reproduced in any way whatsoever without the prior written consent of Illumina. Illumina does not convey any license under its patent, trademark, copyright, or common-law rights nor similar rights of any third parties by this document.

The instructions in this document must be strictly and explicitly followed by qualified and properly trained personnel in order to ensure the proper and safe use of the product(s) described herein. All of the contents of this document must be fully read and understood prior to using such product(s).

FAILURE TO COMPLETELY READ AND EXPLICITLY FOLLOW ALL OF THE INSTRUCTIONS CONTAINED HEREIN MAY RESULT IN DAMAGE TO THE PRODUCT(S), INJURY TO PERSONS, INCLUDING TO USERS OR OTHERS, AND DAMAGE TO OTHER PROPERTY, AND WILL VOID ANY WARRANTY APPLICABLE TO THE PRODUCT(S). ILLUMINA DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE IMPROPER USE OF THE PRODUCT(S) DESCRIBED HEREIN (INCLUDING PARTS THEREOF OR SOFTWARE).

© 2018 Illumina, Inc. All rights reserved.

All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html.
Overview

This guide explains how to denature and dilute prepared libraries for sequencing on the Illumina® NextSeq™ system.

This guide includes instructions for preparing a PhiX library for the following purposes:

- **For a control**—Prepare a PhiX library to combine with prepared libraries for use as a sequencing control. PhiX control protocols start on page 13.
- **For troubleshooting**—Prepare a PhiX library for a PhiX-only sequencing run for troubleshooting purposes. See *Prepare PhiX for a Troubleshooting Run on page 18.*

Loading Volume and Concentration

This procedure denatures and dilutes libraries to a final loading volume of 1.3 ml at a recommended concentration of 1.8 pM for high output kits and 1.5 pM for mid output kits. In practice, loading concentration can vary depending on library preparation and quantification methods.

Protocol Variations

Follow the appropriate denature and dilute protocol depending on the procedure used during library prep.

- **Standard normalization**—Libraries are normalized using standard library quantification and quality control procedures recommended in the library prep documentation. For these libraries, follow Protocol A. See *Protocol A: Standard Normalization Method on page 4.*
- **Bead-based normalization**—Libraries are normalized using a bead-based procedure described in the library prep documentation for methods that support bead-based normalization. For these libraries, follow Protocol B. See *Protocol B: Bead-Based Normalization Method on page 6.*
 - For TruSight™ Tumor 170 libraries, follow Protocol E: *TruSight Tumor 170 Library Denaturation and Dilution Method on page 11.*
 - For TruSight Oncology 500 libraries, follow Protocol F: *TruSight Oncology 500 Library Denaturation and Dilution Method on page 12.*
- **AmpliSeq™ for Illumina normalization**—For all libraries prepared using the standard AmpliSeq for Illumina workflow, follow Protocol C. See *Protocol C: AmpliSeq for Illumina Panels Normalization Method on page 7.*
- **AmpliSeq Library Equalizer™ for Illumina normalization**—For all libraries prepared using the AmpliSeq Library Equalizer for Illumina workflow, follow Protocol D. See *Protocol D: AmpliSeq Library Equalizer for Illumina Normalization Method on page 9.*
- **TruSight Tumor 170 library denaturation and dilution protocol**—For TruSight Tumor 170 libraries, follow Protocol E. See *Protocol E: TruSight Tumor 170 Library Denaturation and Dilution Method on page 11.*
- **TruSight Oncology 500 library denaturation and dilution protocol**—For TruSight Oncology 500 libraries, follow Protocol F. See *Protocol F: TruSight Oncology 500 Library Denaturation and Dilution Method on page 12.*

Best Practices

- **Always** prepare freshly diluted NaOH for denaturing libraries for cluster generation. This step is essential to the denaturation process.
To prevent small pipetting errors from affecting the final NaOH concentration, prepare at least 1 ml of freshly diluted NaOH.

For best results, begin thawing reagents before denaturing and diluting libraries. For instructions, see the system guide for your instrument.

Consumables and Equipment

Consumables

The following consumables are required to denature and dilute libraries and prepare a PhiX control.

<table>
<thead>
<tr>
<th>Consumables</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT1 (Hybridization Buffer)</td>
<td>Component of the NextSeq 500/550 Kit</td>
</tr>
<tr>
<td>[Protocol C] Low TE</td>
<td>Illumina, Provided in the AmpliSeq Library PLUS kit</td>
</tr>
</tbody>
</table>

User-Supplied Consumables

<table>
<thead>
<tr>
<th>Consumables</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 N NaOH, molecular biology-grade</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>[Protocol A-D] 200 mM Tris-HCl, pH 7.0</td>
<td>General lab supplier</td>
</tr>
<tr>
<td>Tris-HCl, pH 7.0</td>
<td>General lab supplier</td>
</tr>
</tbody>
</table>

The following additional consumables are required to prepare a PhiX control.

<table>
<thead>
<tr>
<th>Consumables</th>
<th>Kit Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhiX, 10 nM</td>
<td>Illumina, catalog # FC-110-3002</td>
</tr>
<tr>
<td>RSB (Resuspension Buffer)</td>
<td></td>
</tr>
<tr>
<td>[Protocol E and F] HP3 (2 N NaOH)</td>
<td>Illumina, provided in library prep kit contents</td>
</tr>
</tbody>
</table>

Equipment

The following equipment is used to denature libraries that have been normalized using a bead-based method.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybex Microsample Incubator</td>
<td>SciGene, catalog # 1057-30-O (115 V), or equivalent</td>
</tr>
<tr>
<td></td>
<td>SciGene, catalog # 1057-30-2 (230 V), or equivalent</td>
</tr>
<tr>
<td>Block for 1.5 ml microcentrifuge tubes</td>
<td>SciGene, catalog # 1057-34-0, or equivalent</td>
</tr>
</tbody>
</table>

Protocol A: Standard Normalization Method

Use protocol A to denature and dilute libraries that have been normalized using standard library quantification and quality control procedures recommended in the library prep documentation.

NOTE

Typically, it is important that not more than 1 mM NaOH is in the final solution after diluting with HT1. However, introducing 200 mM Tris-HCl ensures that the NaOH is fully hydrolyzed in the final solution. As a result, template hybridization is not affected even if the final NaOH concentration after diluting with HT1 is greater than 1 mM.
Prepare Reagents

Prepare a Fresh Dilution of NaOH
1. Combine the following volumes in a microcentrifuge tube:
 - Laboratory-grade water (800 µl)
 - Stock 1.0 N NaOH (200 µl)
 The result is 1 ml of 0.2 N NaOH.
2. Invert the tube several times to mix.

 NOTE
 Use the fresh dilution within 12 hours.

Prepare HT1
1. Remove HT1 from -25°C to -15°C storage and thaw at room temperature.
2. Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Prepare RSB

 NOTE
 In place of RSB, you can use 10 mM Tris-HCl, pH 8.5 with 0.1% Tween 20.
1. Remove the tube of RSB from -25°C to -15°C storage and thaw at room temperature.
2. Store thawed RSB at 2°C to 8°C until you are ready to dilute libraries.

Denature Libraries
1. Combine the following volumes of library and freshly diluted 0.2 N NaOH in a microcentrifuge tube.

<table>
<thead>
<tr>
<th>Starting Library Concentration</th>
<th>Library</th>
<th>0.2 N NaOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 nM</td>
<td>5 µl</td>
<td>5 µl</td>
</tr>
<tr>
<td>2 nM</td>
<td>10 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>1 nM</td>
<td>20 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>0.5 nM</td>
<td>40 µl</td>
<td>40 µl</td>
</tr>
</tbody>
</table>

2. Vortex briefly and then centrifuge at 280 × g for 1 minute.
3. Incubate at room temperature for 5 minutes.
4. Add the following volume of 200 mM Tris-HCl, pH 7.

<table>
<thead>
<tr>
<th>Starting Library Concentration</th>
<th>200 mM Tris-HCl, pH 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 nM</td>
<td>5 µl</td>
</tr>
<tr>
<td>2 nM</td>
<td>10 µl</td>
</tr>
<tr>
<td>1 nM</td>
<td>20 µl</td>
</tr>
<tr>
<td>0.5 nM</td>
<td>40 µl</td>
</tr>
</tbody>
</table>

5. Vortex briefly and then centrifuge at 280 × g for 1 minute.
Dilute Denatured Libraries to 20 pM

1. Add the following volume of prechilled HT1 to the tube of denatured libraries.

<table>
<thead>
<tr>
<th>Starting Library Concentration</th>
<th>Prechilled HT1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 nM</td>
<td>985 µl</td>
</tr>
<tr>
<td>2 nM</td>
<td>970 µl</td>
</tr>
<tr>
<td>1 nM</td>
<td>940 µl</td>
</tr>
<tr>
<td>0.5 nM</td>
<td>880 µl</td>
</tr>
</tbody>
</table>

 The result is a 20 pM denatured library.

2. Vortex briefly and then centrifuge at 280 × g for 1 minute.

3. Place the 20 pM libraries on ice until you are ready to proceed to final dilution.

Dilute Libraries to Loading Concentration

High Output Kits

1. Dilute the denatured 20 pM library solution to 1.8 pM as follows.
 - Denatured library solution (117 µl)
 - Prechilled HT1 (1183 µl)
 The total volume is 1.3 ml at 1.8 pM.

2. Invert to mix and then pulse centrifuge.

3. If you plan to add a PhiX control, proceed to Denature and Dilute PhiX Control (Protocols A-D) on page 13. Otherwise, see Next Steps on page 18.

Mid Output Kits

1. Dilute the denatured 20 pM library solution to 1.5 pM as follows.
 - Denatured library solution (97 µl)
 - Prechilled HT1 (1203 µl)
 The total volume is 1.3 ml at 1.5 pM.

2. Invert to mix and then pulse centrifuge.

3. If you plan to add a PhiX control, proceed to Denature and Dilute PhiX Control (Protocols A-D) on page 13. Otherwise, see Next Steps on page 18.

Protocol B: Bead-Based Normalization Method

Use protocol B to denature and dilute libraries that have been normalized and pooled using a bead-based procedure described in the library prep documentation for methods that support bead-based normalization.

For TruSight Tumor 170 libraries, follow Protocol E: TruSight Tumor 170 Library Denaturation and Dilution Method on page 11.

For TruSight Oncology 500 libraries, follow Protocol F: TruSight Oncology 500 Library Denaturation and Dilution Method on page 12.
Bead-based normalization procedures can be variable. Depending upon library type and experience, 2-5 µl of library produces optimal results.

Prepare HT1

1. Remove HT1 from -25°C to -15°C storage and thaw at room temperature.
2. Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Prepare Incubator

1. Preheat the incubator to 98°C.

Dilute Library to Loading Concentration

1. Combine the following volumes of pooled libraries and prechilled Hybridization Buffer in a microcentrifuge tube.

<table>
<thead>
<tr>
<th>Library Pool</th>
<th>Prechilled Hybridization Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 µl</td>
<td>998 µl</td>
</tr>
<tr>
<td>3 µl</td>
<td>997 µl</td>
</tr>
<tr>
<td>4 µl</td>
<td>996 µl</td>
</tr>
<tr>
<td>5 µl</td>
<td>995 µl</td>
</tr>
</tbody>
</table>

The total volume is 1 ml.
2. Vortex briefly and then centrifuge at 280 × g for 1 minute.
3. Transfer 750 µl diluted library to a new microcentrifuge tube.
4. Add 750 µl prechilled Hybridization Buffer.
5. Vortex briefly and then centrifuge at 280 × g for 1 minute.

Denature Diluted Library

1. Place the tube on the preheated incubator for 2 minutes.
2. Immediately cool on ice.
3. Leave on ice for 5 minutes.
4. If you plan to add a PhiX control, proceed to *Denature and Dilute PhiX Control (Protocols A-D)* on page 13. Otherwise, see *Next Steps* on page 18.

Protocol C: AmpliSeq for Illumina Panels Normalization Method

Use protocol C to denature and dilute libraries prepared using the standard AmpliSeq for Illumina workflow. Final loading concentration and volume vary depending on library preparation and quantification methods. For information about the number of libraries supported per sequencing run, use the Illumina support website to refer to the AmpliSeq for Illumina support page for your panel.
Prepare Reagents

Prepare a Fresh Dilution of NaOH

1. Combine the following volumes in a microcentrifuge tube:
 - Laboratory-grade water (800 µl)
 - Stock 1.0 N NaOH (200 µl)
 The result is 1 ml of 0.2 N NaOH.

2. Invert the tube several times to mix.

 NOTE
 Use the fresh dilution within **12 hours**.

Prepare HT1

1. Remove HT1 from -25°C to -15°C storage and thaw at room temperature.

2. Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Prepare Low TE

1. If frozen, remove Low TE from -25°C to -15°C storage and thaw at room temperature.

2. Store thawed Low TE at room temperature until you are ready to dilute libraries.

Dilute Libraries

1. In a new 96-well LoBind PCR plate, dilute each library to 2 nM using Low TE.

Pool Libraries

1. Transfer equal volumes of each 2 nM library from the plate to a 1.5 mL LoBind tube. If applicable, make sure to use separate tubes for DNA and RNA libraries.

2. Vortex each tube to mix.

3. Centrifuge each tube briefly.

4. If DNA and RNA libraries are to be grouped in a single sequencing run, combine the DNA and RNA library pools at the following ratio of DNA to RNA:

<table>
<thead>
<tr>
<th>Panel</th>
<th>DNA to RNA ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmpliSeq for Illumina Myeloid Panel</td>
<td>8:1</td>
</tr>
<tr>
<td>AmpliSeq for Illumina Childhood Cancer Panel</td>
<td>5:1</td>
</tr>
<tr>
<td>AmpliSeq for Illumina Comprehensive Panel v3</td>
<td>25:1</td>
</tr>
</tbody>
</table>

5. After combining the pools, vortex tube to mix and then centrifuge briefly.

Denature Libraries

1. Combine the following volumes of library and freshly diluted 0.2 N NaOH in a microcentrifuge tube.
Reagent | Volume (µl)
--- | ---
Pooled libraries | 10
0.2 N NaOH | 10

2 Vortex briefly and then centrifuge briefly.
3 Incubate at room temperature for 5 minutes.
4 Add 10 µl 200 mM Tris-HCl, pH 7.0 to the tube containing 2 nM pooled libraries.
5 Vortex briefly and then centrifuge briefly.

Dilute Denatured Libraries to 20 pM

1 Add 970 µl prechilled HT1 to the tube of 2 nM denatured library pool. The result is a 20 pM denatured library.
2 Vortex briefly and then centrifuge briefly.
3 Place the 20 pM libraries on ice until you are ready to proceed to final dilution.

Dilute Libraries to Final Loading Concentration

1 Use prechilled HT1 to dilute the denatured 20 pM library solution to the desired final loading concentration at a final volume of 1.3 ml.

<table>
<thead>
<tr>
<th>Quantification system</th>
<th>Suggested Final Loading Concentration (pM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AmpliSeq for Illumina Exome Panel</td>
</tr>
<tr>
<td>Bioanalyzer</td>
<td>~1.3</td>
</tr>
<tr>
<td>Fragment Analyzer</td>
<td>~1.3</td>
</tr>
<tr>
<td>Accuclear</td>
<td>~1.3</td>
</tr>
<tr>
<td>PicoGreen</td>
<td>~1.6</td>
</tr>
<tr>
<td>Qubit HS</td>
<td>~1.6</td>
</tr>
<tr>
<td>qPCR (non-size adjusted)</td>
<td>~1.8</td>
</tr>
<tr>
<td>qPCR (size adjusted)</td>
<td>~3.5</td>
</tr>
</tbody>
</table>

- Denatured library solution (117 µl)
- Prechilled HT1 (1183 µl)
The total volume is 1.3 ml at 1.8 pM.

2 Invert to mix and then centrifuge briefly.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Protocol D: AmpliSeq Library Equalizer for Illumina Normalization Method

Use protocol D to denature and dilute libraries prepared using the AmpliSeq Library Equalizer for Illumina workflow. Libraries prepared using the AmpliSeq Library Equalizer for Illumina workflow are normalized to a starting concentration ready for sample pooling. For information about the number of libraries supported per sequencing run, use the Illumina support website to refer to the AmpliSeq for Illumina support page for your panel.
Prepare Reagents

Prepare a Fresh Dilution of NaOH

1. Combine the following volumes in a microcentrifuge tube:
 - Laboratory-grade water (800 µl)
 - Stock 1.0 N NaOH (200 µl)
 The result is 1 ml of 0.2 N NaOH.
2. Invert the tube several times to mix.

 NOTE
 Use the fresh dilution within 12 hours.

Prepare HT1

1. Remove HT1 from -25°C to -15°C storage and thaw at room temperature.
2. Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Pool Libraries

1. Transfer equal volumes of each library from the plate to a 1.5 mL LoBind tube.
 If applicable, make sure to use separate tubes for DNA and RNA libraries.
2. Vortex each tube to mix.
3. Centrifuge each tube briefly.
4. If DNA and RNA libraries are to be grouped in a single sequencing run, combine the DNA and RNA library pools at the following ratio of DNA to RNA:

<table>
<thead>
<tr>
<th>Panel</th>
<th>DNA to RNA ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmpliSeq for Illumina Myeloid Panel</td>
<td>8:1</td>
</tr>
<tr>
<td>AmpliSeq for Illumina Childhood Cancer Panel</td>
<td>5:1</td>
</tr>
<tr>
<td>AmpliSeq for Illumina Comprehensive Panel v3</td>
<td>25:1</td>
</tr>
</tbody>
</table>
5. After combining the pools, vortex tube to mix and then centrifuge briefly.

Denature Libraries

1. Combine the following volumes of library and freshly diluted 0.2 N NaOH in a microcentrifuge tube.

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pooled libraries</td>
<td>10</td>
</tr>
<tr>
<td>0.2 N NaOH</td>
<td>10</td>
</tr>
</tbody>
</table>
2. Vortex briefly and then centrifuge briefly.
3. Incubate at room temperature for 5 minutes.
4. Add 10 µl 200 mM Tris-HCl, pH 7.0 to the tube containing pooled libraries.
5. Vortex briefly and then centrifuge briefly.
Dilute Denatured Libraries

1. Add 970 µl prechilled HT1 to the tube of denatured library pool.
2. Vortex briefly and then centrifuge briefly.
3. Place the libraries on ice until you are ready to proceed to final dilution.

Dilute Libraries to Final Loading Concentration

1. Combine the following volumes to dilute the denatured library solution to the final loading concentration:
 - Denatured library (95 µl)
 - HT1 (1205 µl)
2. Invert to mix and then centrifuge briefly.

SAFE STOPPING POINT

If you are stopping, seal the plate and store at -25°C to -15°C.

Protocol E: TruSight Tumor 170 Library Denaturation and Dilution Method

Use protocol E to denature and dilute TruSight Tumor 170 libraries.

Use the following procedures to achieve optimal cluster density:
- Sequence 16 libraries (8 DNA and 8 RNA) per run to achieve maximum coverage for each library.
- If you are sequencing DNA libraries only, you can sequence up to 10 libraries.
- If you are sequencing RNA libraries only, you can sequence up to 16 libraries.
- Contact Illumina Technical Support if you are sequencing other combinations of DNA and RNA libraries.

Prepare HT1

1. Remove HT1 from -25°C to -15°C storage and thaw at room temperature. Vortex to resuspend.
2. Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Prepare Incubator

1. Preheat the incubator to 96°C.

Denature Libraries

1. Incubate each pooled library tube in a heat block at 96°C for 2 minutes.
2. Invert each tube two times to mix.
3. Centrifuge briefly, and then place on ice for 5 minutes.
4. [Optional] The denatured RNA and DNA libraries can be stored at -25°C to -15°C for up to 30 days. If you are using denatured RNA and DNA libraries that have been stored frozen, repeat steps 1-3 to redenature, mix, and cool tubes before proceeding to the next step.
Dilute Libraries

Choose one of the following dilution procedures to produce a denatured library solution. If you are sequencing the same number of DNA and RNA libraries, pool at a 4:1 ratio of DNA to RNA. If you are sequencing an unequal number of libraries (for example, 7 DNA + 3 RNA), contact Illumina Technical Support.

Sequence cDNA and DNA Libraries Simultaneously

1. Transfer 20 μl of denatured DNA library to a new, screw-top microcentrifuge tube.
2. Add 5 μl of denatured RNA library to the tube.
3. Add 475 μl HT1 buffer to the tube to make a 1:20 dilution.
4. Vortex to mix.
5. Centrifuge briefly.

Sequence DNA Libraries

1. Transfer 10 μl of denatured DNA library to a new, screw-top microcentrifuge tube.
2. Add 190 μl HT1 buffer to the tube to make a 1:20 dilution.
3. Vortex to mix.
4. Centrifuge briefly.

Sequence cDNA Libraries

1. Transfer 10 μl of denatured RNA library to a new, screw-top microcentrifuge tube.
2. Add 190 μl HT1 buffer to the tube to make a 1:20 dilution.
3. Vortex to mix.
4. Centrifuge briefly.

Dilute Denatured Libraries to Final Loading Concentration

1. Transfer 40 μl of denatured library solution into a new, snap-cap microcentrifuge tube.
2. Add 1360 μl HT1 buffer to the tube.
3. Vortex to mix.
4. Centrifuge briefly.
5. If you plan to add a PhiX control, proceed to Denature and Dilute PhiX Control (Protocol E) on page 15. Otherwise, see Next Steps on page 18.

Protocol F: TruSight Oncology 500 Library Denaturation and Dilution Method

Use protocol F to pool, denature, and dilute libraries prepared using the TruSight Oncology 500 workflow. Libraries prepared using the workflow are normalized to a starting concentration ready for sample pooling. For information about the number of libraries supported per sequencing run, refer to the TruSight Oncology 500 support pages on the Illumina support website.
Prepare HT1
1 Remove HT1 from -25°C to -15°C storage and thaw at room temperature. Vortex to resuspend.
2 Store at 2°C to 8°C until you are ready to dilute denatured libraries.

Prepare Incubator
1 Preheat the incubator to 96°C.

Pool Libraries
1 Thaw NL plate to room temperature. Pipette to mix and centrifuge.
2 Label a 1.5 ml screw top microcentrifuge tube PDL (Pooled DNA Libraries).
3 Transfer 10 µl of each normalized DNA library from the NL plate to the PDL tube.
4 Vortex each tube to mix.
5 Centrifuge each tube briefly.

Denature Libraries
1 Incubate the pooled library tube in a heat block at 96°C for 2 minutes.
2 Invert the tube two times to mix.
3 Centrifuge briefly, and then place on ice for 5 minutes.
4 [Optional] Store pooled denatured libraries at -25°C to -15°C for up to 30 days. To use frozen libraries, repeat steps 1-3 before diluting libraries.

Dilute Libraries
1 Transfer 10 µl of denatured library pool to a new, screw-top microcentrifuge tube.
2 Add 190 µl HT1 buffer to the tube to make a 1:20 dilution.
3 Vortex to mix.
4 Centrifuge briefly.

Dilute Denatured Libraries to Final Loading Concentration
1 Transfer 40 µl of denatured library solution into a new, snap-cap microcentrifuge tube.
2 Add 1660 µl HT1 buffer to the tube.
3 Vortex to mix.
4 Centrifuge briefly.
5 If you plan to add PhiX control, proceed to Denature and Dilute PhiX Control (Protocol F) on page 16. Otherwise, see Next Steps on page 18.

Denature and Dilute PhiX Control (Protocols A–D)
Use the following procedure to denature and dilute a PhiX library for use as a sequencing control for protocols A–D.
Dilute PhiX to 4 nM

1. Thaw a tube of 10 nM PhiX stock (10 µl/tube).
2. Combine the following volumes in a microcentrifuge tube.
 - 10 nM PhiX (10 µl)
 - RSB (15 µl)
 The total volume is 25 µl at 4 nM.
3. Vortex briefly and then pulse centrifuge.

 ![NOTE]

 [Optional] Store the 4 nM PhiX at -25°C to -15°C for up to 3 months.

Denature PhiX

1. Combine the following volumes in a microcentrifuge tube.
 - 4 nM PhiX (5 µl)
 - 0.2 N NaOH, freshly diluted (5 µl)
2. Vortex briefly, and then pulse centrifuge.
3. Incubate at room temperature for 5 minutes.
4. Add 5 µl 200 mM Tris-HCl, pH 7.0.
5. Vortex briefly and then centrifuge at 280 × g for 1 minute.

Dilute Denatured PhiX to Loading Concentration

High Output Kits

1. Add 985 µl of prechilled HT1 to the tube of denatured PhiX.
 The total volume is 1 ml at 20 pM.
2. Dilute the denatured 20 pM PhiX to 1.8 pM as follows.
 - Denatured PhiX (117 µl)
 - Prechilled HT1 (1183 µl)
 The total volume is 1.3 ml at 1.8 pM.
3. Invert to mix and then centrifuge at 280 × g for 1 minute.

 ![NOTE]

 [Optional] Store the denatured 1.8 pM PhiX at -25°C to -15°C for up to 2 weeks. After 2 weeks, cluster numbers tend to decrease.

Mid Output Kits

1. Add 985 µl of prechilled HT1 to the tube of denatured PhiX.
 The total volume is 1 ml at 20 pM.
2. Dilute the denatured 20 pM PhiX to 1.5 pM as follows.
 - Denatured PhiX (97 µl)
 - Prechilled HT1 (1203 µl)
 The total volume is 1.3 ml at 1.5 pM.
3 Invert to mix and then centrifuge at 280 × g for 1 minute.

NOTE

(Optional) Store the denatured 1.5 pM PhiX at -25°C to -15°C for up to 2 weeks. After 2 weeks, cluster numbers tend to decrease.

Combine Library and PhiX Control

For most libraries use a low-concentration PhiX control spike-in at 1% as a sequencing control.

1 Combine the following volumes of denatured PhiX control and denatured library.

<table>
<thead>
<tr>
<th>Library and Concentration (Using 1.5 pM PhiX for Mid Output Kits)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatured and diluted PhiX control at 1.5 pM</td>
<td>13 µl</td>
</tr>
<tr>
<td>Denatured and diluted library (from protocol A, B, C, or D)</td>
<td>1287 µl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Library and Concentration (Using 20 pM PhiX for Mid Output Kits)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denatured and diluted PhiX control at 20 pM</td>
<td>1 µl</td>
</tr>
<tr>
<td>Denatured and diluted library (from protocol A, B, C, or D)</td>
<td>1299 µl</td>
</tr>
</tbody>
</table>

2 Set aside on ice until you are ready to load it onto the reagent cartridge.

NOTE

The library and PhiX mixture provides a PhiX spike-in of 0.5%–2.0%. Actual PhiX percentage varies depending upon the quality and quantity of the library pool.

Denature and Dilute PhiX Control (Protocol E)

Use the following procedure to denature and dilute a PhiX library for use as a sequencing control for TruSight Tumor 170 libraries.

Prepare Reagents

Prepare HP3

1 Remove HP3 from 2°C to 8°C storage, and bring to room temperature.

Prepare a Fresh Dilution of NaOH

1 Combine the following volumes in a microcentrifuge tube:
 - RNase/DNase-free water (950 µl)
 - HP3 (50 µl)

The result is 1 ml of 0.1 N NaOH.

2 Invert the tube several times to mix.

CAUTION

Use the fresh dilution within 1 hour.
Prepare PhiX Control

Dilute PhiX to 2 nM
1 Thaw a tube of 10 nM PhiX stock (10 µl/tube).
2 Combine the following volumes in a microcentrifuge tube.
 - 10 nM PhiX (2 µl)
 - RSB (8 µl)
 The total volume is 10 µl at 2 nM.
3 Pipette up and down five times to mix.

Denature PhiX
1 Combine the following volumes in a microcentrifuge tube.
 - 2 nM PhiX (10 µl)
 - 0.1 N NaOH, freshly diluted (10 µl)
2 Vortex to mix.
3 Centrifuge briefly.
4 Incubate at room temperature for 5 minutes.

Dilute Denatured PhiX to Loading Concentration
1 Add 980 µl of prechilled HT1 to the tube of denatured PhiX.
 The total volume is 1 ml at 20 pM.
2 Invert to mix, and then centrifuge at 280 × g for 1 minute.

NOTE
[Optional] Store the denatured 20 pM PhiX at -25°C to -15°C for up to 3 weeks as single-use 50 µl aliquots.

Combine Library and PhiX Control
1 Combine the following volumes of denatured PhiX control and denatured library.
 - Denatured 20 pM PhiX control (2.5 µl)
 - Denatured library (1300 µl)
2 Vortex to mix.
3 Centrifuge briefly.
4 Set aside on ice until you are ready to load it onto the reagent cartridge.

Denature and Dilute PhiX Control (Protocol F)
Use the following procedure to denature and dilute a PhiX library for use as a sequencing control for protocol F.
Prepare Reagents

Prepare HP3
1 Remove HP3 from 2°C to 8°C storage, and bring to room temperature.

Prepare a Fresh Dilution of NaOH
1 Combine the following volumes in a microcentrifuge tube:
 - RNase/DNase-free water (190 µl)
 - HP3 (10 µl)
 The result is 1 ml of 0.1 N NaOH.
2 Invert the tube several times to mix.
 CAUTION
 Use the fresh dilution within 1 hour.

Prepare PhiX Control

Dilute PhiX to 2 nM
1 Thaw a tube of 10 nM PhiX stock (10 µl/tube).
2 Combine the following volumes in a microcentrifuge tube.
 - 10 nM PhiX (2 µl)
 - RSB (8 µl)
 The total volume is 10 µl at 2 nM.
3 Pipette up and down five times to mix.

Denature PhiX
1 Combine the following volumes in a microcentrifuge tube.
 - 2 nM PhiX (10 µl)
 - 0.1 N NaOH, freshly diluted (10 µl)
2 Vortex to mix.
3 Centrifuge briefly.
4 Incubate at room temperature for 5 minutes.

Dilute Denatured PhiX to Loading Concentration
1 Add 980 µl of prechilled HT1 to the tube of denatured PhiX.
 The total volume is 1 ml at 20 pM.
2 Invert to mix, and then centrifuge at 280 × g for 1 minute.
 NOTE
 [Optional] Store the denatured 20 pM PhiX at -25°C to -15°C for up to 3 weeks as single-use 50 µl aliquots.
Combine Library and PhiX Control

1. Combine the following volumes in a microcentrifuge tube.
 - Denatured 20 pM PhiX control (2.5 μl)
 - Denatured TruSight Oncology 500 library (1700 μl)

2. Vortex to mix.
3. Centrifuge briefly.
4. Set aside on ice until you are ready to load it onto the reagent cartridge.

Next Steps

After denaturing and diluting your libraries and preparing the optional PhiX control, you are ready to load libraries onto the reagent cartridge and set up the sequencing run. See the NextSeq 500 System Guide (document # 15046563) or NextSeq 550 System Guide (document # 15069765).

Prepare PhiX for a Troubleshooting Run

Use the following procedure to denature and dilute a PhiX library for use as a PhiX-only sequencing run. Performing a PhiX-only run is helpful in confirming instrument performance or for troubleshooting purposes. A PhiX-only run requires 100% PhiX library at recommended volumes and loading concentration.

Before proceeding, prepare reagents as described in Prepare Reagents on page 17.

Dilute PhiX to 4 nM

1. Thaw a tube of 10 nM PhiX stock (10 μl/tube).
2. Combine the following volumes in a microcentrifuge tube.
 - 10 nM PhiX (10 μl)
 - RSB (15 μl)
 - The total volume is 25 μl at 4 nM.
3. Vortex briefly and then pulse centrifuge.

 NOTE
 [Optional] Store the 4 nM PhiX at -25°C to -15°C for up to 3 months.

Denature PhiX

1. Combine the following volumes in a microcentrifuge tube.
 - 4 nM PhiX (5 μl)
 - 0.2 N NaOH, freshly diluted (5 μl)
2. Vortex briefly, and then pulse centrifuge.
3. Incubate at room temperature for 5 minutes.
4. Add 5 μl 200 mM Tris-HCl, pH 7.0.
5. Vortex briefly and then centrifuge at 280 x g for 1 minute.
Dilute Denatured PhiX to Loading Concentration

1. Add 985 µl of prechilled HT1 to the tube of denatured PhiX. The total volume is 1 ml at 20 pM.

2. Dilute the denatured 20 pM PhiX to 1.8 pM as follows:
 - Denatured PhiX (117 µl)
 - Prechilled HT1 (1183 µl)
 The total volume is 1.3 ml at 1.8 pM.

3. Invert to mix and then centrifuge at 280 × g for 1 minute.

4. Set aside on ice until you are ready to load the library onto the reagent cartridge.
Revision History

<table>
<thead>
<tr>
<th>Document</th>
<th>Date</th>
<th>Description of Change</th>
</tr>
</thead>
</table>
| Document # 15048776 v09 | December 2018 | Added a new protocol for denaturing and diluting TruSight Tumor 170 libraries.
Added a new procedure for denaturing and diluting PhiX for TruSight Tumor 170.
Added a new protocol for pooling, denaturing, and diluting TruSight Oncology 500 libraries.
Added a new procedure for denaturing and diluting PhiX for TruSight Oncology 500. |
| Document # 15048776 v08 | November 2018 | Fixed AmpliSeq for Illumina Myeloid Panel pooling ratio in Protocol D. |
| Document # 15048776 v07 | November 2018 | Fixed AmpliSeq for Illumina Myeloid Panel pooling ratio in Protocol C.
Added AmpliSeq for Illumina Childhood Cancer Research Assay Panel pooling ratio. |
| Document # 15048776 v06 | October 2018 | Added Protocol D for denaturing and diluting libraries prepared using the AmpliSeq Library Equalizer for Illumina workflow. |
| Document # 15048776 v05 | July 2018 | Added pooling ratio for AmpliSeq Myeloid Panel for Illumina. |
| Document # 15048776 v04 | May 2018 | Added note regarding mid output kit loading concentration.
Added information on high and mid output kits.
Removed caution against using PhiX with Protocol C. |
| Document # 15048776 v03 | April 2018 | Added Protocol C for denaturing and diluting AmpliSeq for Illumina Panels. |
| Document # 15048776 v02 | January 2016 | Added procedure for denaturing and diluting libraries that have been normalized using a bead-based procedure. Organized procedures as Protocol A and Protocol B.
Add instructions to dilute PhiX to 1.8 pM for use as a control. |
| Document # 15048776 v01 | October 2015 | Removed extra vortex and centrifuge steps from PhiX preparation instructions.
Removed instructions for using NCS v1.2 software. |
| Part # 15048776 Rev. E | May 2015 | Changed title to the NextSeq System Denature and Dilute Libraries Guide. This guide applies to the NextSeq 500 and NextSeq 550 systems. |
| Part # 15048776 Rev. D | October 2014 | Corrected library volume to 2995 µl when combining libraries with a PhiX spike-in and when using NCS v1.2.
Added information about performing a PhiX-only run for troubleshooting purposes. |
| Part # 15048776 Rev. C | September 2014 | Updated URL for Safety Data Sheets (SDS) to support.illumina.com/sds.html.
Updated NextSeq product markings from ™ to ®. |
| Part # 15048776 Rev. B | August 2014 | Added instructions for preparing a library loading concentration of 1.8 pM, and reduced loading volume from of 1.3 ml. This change requires NCS v1.3.
Corrected volumes for denaturing and diluting a 0.5 nM library.
Updated URL for Safety Data Sheets (SDS) to support.illumina.com/sds.lmn. |
Technical Assistance

For technical assistance, contact Illumina Technical Support.

Website: www.illumina.com

Email: techsupport@illumina.com

Illumina Customer Support Telephone Numbers

<table>
<thead>
<tr>
<th>Region</th>
<th>Toll Free</th>
<th>Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>+1.800.809.4566</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>+1.800.775.688</td>
<td></td>
</tr>
<tr>
<td>Austria</td>
<td>+43 800006249</td>
<td>+43 19286540</td>
</tr>
<tr>
<td>Belgium</td>
<td>+32.80077160</td>
<td>+32 34002973</td>
</tr>
<tr>
<td>China</td>
<td>400.066.5835</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>+45 80820183</td>
<td>+45 89871156</td>
</tr>
<tr>
<td>Finland</td>
<td>+358 800918363</td>
<td>+358 974790110</td>
</tr>
<tr>
<td>France</td>
<td>+33 805102193</td>
<td>+33 170770446</td>
</tr>
<tr>
<td>Germany</td>
<td>+49 8001014940</td>
<td>+49 8938035677</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>800960230</td>
<td></td>
</tr>
<tr>
<td>Ireland</td>
<td>+353 1800936608</td>
<td>+353 016950506</td>
</tr>
<tr>
<td>Italy</td>
<td>+39 800985513</td>
<td>+39 236003759</td>
</tr>
<tr>
<td>Japan</td>
<td>0800.111.5011</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>+31 800022493</td>
<td>+31 207132960</td>
</tr>
<tr>
<td>New Zealand</td>
<td>0800.451.650</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>+47 800 16836</td>
<td>+47 21939693</td>
</tr>
<tr>
<td>Singapore</td>
<td>+1.800.579.2745</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>+34 911899417</td>
<td>+34 800300143</td>
</tr>
<tr>
<td>Sweden</td>
<td>+46 850619671</td>
<td>+46 200883979</td>
</tr>
<tr>
<td>Switzerland</td>
<td>+41 565800000</td>
<td>+41 800200442</td>
</tr>
<tr>
<td>Taiwan</td>
<td>00806651752</td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>+44 8000126019</td>
<td>+44 2073057197</td>
</tr>
<tr>
<td>Other countries</td>
<td>+44.1799.534000</td>
<td></td>
</tr>
</tbody>
</table>

Safety data sheets (SDSs)—Available on the Illumina website at support.illumina.com/sds.html.

Product documentation—Available for download in PDF from the Illumina website. Go to support.illumina.com, select a product, then select **Documentation & Literature**.