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Introduction
As the cost of whole-exome sequencing (WES), whole- 
genome sequencing (WGS), and downstream data pro-
cessing continues to decrease, population sequencing 
studies are becoming feasible at unprecedented scales. 
Cohort-level catalogs of variation are key resources 
for ancestry studies, rare variant insights, discovery of 
genotype/phenotype associations, and annotation of 
clinical genomic features. It is important that cohort call 
sets are highly accurate, yet informatic and analytical chal-
lenges remain when combining data from a large number 
of samples. 

Population genetics data analysis
A typical workflow for population genetics (PopGen) 
data processing starts with analyzing the samples inde-
pendently during the read mapping and variant calling 
stage, with variants exported to a gVCF file. gVCF files 
are aggregated across all samples in a cohort to obtain a 
conceptual matrix populated with genotypes and associat-
ed confidence metrics (Figure 1). The matrix can be saved 
in multiple formats, including a multisample VCF (DRAGEN 
gVCF Genotyper), multisample gVCF (DRAGEN/Genome 
analysis toolkit (GATK) Combine gVCF), or a database 
(GATK GenomicsDB, GLnexus RocksDB). In all cases, the 
aim is to provide a variant-centric view with genotype calls 
across the entire cohort. This provides the opportunity 
to use cohort information to improve genotype calls in 
individual samples, a statistical model known as joint geno-
typing. However, care must be taken because increasing 
sample sizes can also accumulate errors.

There is limited data on the impact of joint genotyping on 
accuracy, in part because it has been difficult to separate 
the joint genotyping tool from the gVCF aggregation tool. 
Aggregating a large number of samples presents particular 
challenges when unifying different variant representa-
tions in a consistent way across the cohort. An increase in 
cohort size implies an increase of multiallelic variants and 
the number of alternative alleles, so trade-offs must be 
made between preserving the full data from the gVCFs and 
scalability. Additionally, established GATK workflows for 
data processing are complicated, adding to the challenge. 

The DRAGEN Platform offers a simplified workflow for 
cohort analysis (Figure 1) where the output format before 
and after joint genotyping is a multisample VCF file. This 

enables a direct measurement of the impact of the joint 
genotyping model.

In this technical note, the performance of joint genotyping 
with DRAGEN secondary analysis is evaluated in three use 
cases that are common for large-scale PopGen projects: 

• High-coverage WGS samples at 35× 
• Low-coverage WGS samples at 15× 
• High-coverage WES samples at 50× 

Benchmarking comparisons using DRAGEN secondary 
analysis against a call set generated with GATK on a 
recent resequencing of the 1000 Genomes Project phase 
3 samples1 are presented. Contribution of each workflow 
stage to call set accuracy is analyzed and a detailed 
investigation into why some methods that are part of 
the GATK best practice workflow are not expected to be 
beneficial for data generated using DRAGEN analysis is 
provided. Finally, recommendations for processing cohorts 
with DRAGEN secondary analysis to obtain analysis-ready 
variants are presented.

Methods
Input data sets

WGS cohort analysis was based on the 1000 Genomes 
Project cohort.2 The data set contains 2504 WGS samples 
sequenced on the NovaSeq™ 6000 System at > 30× 
coverage. Results from processing the same samples with 
the GATK workflow are publicly available so results can be 
reproduced.3,4 WES cohort analysis was based on a panel 
of 10 samples comprising eight unrelated samples from 
the CEPH collection (CEU) and two samples from trios in 
the Genome In a Bottle (GIAB) consortium.5 All samples 
were sequenced on the NovaSeq 6000 System. Human 
reference genome hg38 with alternate contigs was used 
for all analyses.

Cohort analysis

For WGS analysis, gVCF files from the cohort were ag-
gregated and joint genotyped using DRAGEN secondary 
analysis v3.5.7b or joint genotyped and processed for 
variant quality score recalibration (VQSR) following the 
GATK v3.5 workflow (Figure 1). Both workflows produce 
msVCF output per chromosome.

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20190425_NYGC_GATK/
https://www.nist.gov/programs-projects/genome-bottle
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Figure 1: PopGen data processing and analysis workflows using DRAGEN secondary analysis (left) and GATK best practices (right) 
workflows.3—The DRAGEN PopGen workflow is composed of two distinct steps: aggregation of gVCFs through the cohort with gVCF 
Genotyper (DRAGEN-GG), and the joint genotyping step with Joint Genotyper (DRAGEN-JG). The DRAGEN workflow does not require any 
recalibration steps.
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High-coverage WGS
To demonstrate the performance of DRAGEN secondary 
analysis in high-coverage WGS samples, we performed a 
direct accuracy comparison between DRAGEN secondary 
analysis and GATK call sets. Performance was measured 
using receiver operator characteristic (ROC) metrics in a 
well-characterized sample (NA12878), with truth variants 
released by the GIAB, that was part of the original cohort. 
We restricted analyses to chromosome 17 to minimize 
computational costs.

Quote  ROC curves plot the true positive rate against the 
false positive rate at various thresholds. The area under an 
ROC curve is a metric for variant-calling accuracy.

Results

Four population data sets were assessed by extracting the 
column containing the truth sample NA12878 from the mul-
tisample VCF output and plotting ROC curves. Two were 
from the GATK workflow and two from DRAGEN secondary 
analysis: 

• All pass variants from Joint Genotyping (GATK-JG)* 
• All pass variants from Joint Genotyping that also passed 

recalibration only (GATK-VQSR) 
• All pass variants from gVCF Genotyper (DRAGEN-GG) 
• All pass variants after Joint Genotyping (DRAGEN-JG) 

Overall, DRAGEN secondary analysis outperforms GATK, 
regardless of the workflow composition, driven by 
superior accuracy in single-sample variant calling for SNPs 
(Figure 2A) and indels (Figure 2B). An unexpected obser-
vation is that DRAGEN accuracy is reduced after Joint 
Genotyping due to an increase in false positives (Figure 2 
and Figure 3). Traditional joint calling methods available 
today do not provide any gains when applied to DRAGEN 
single-sample gVCFs and result in unnecessary higher 
costs. This is because the DRAGEN secondary analysis 
genotyper includes models of PCR-induced errors and 
pileup correlated errors. 

Quote  Read the Accuracy improvements in germline small 
variant calling with the DRAGEN platform application note.

* The output of GATK aggregation, before joint 
genotyping, was not available.

Mendelian errors in trios are a useful metric for broad 
assessment of precision because they are not restricted 
to variants within high-confidence regions of the genome. 
Evaluating the number of Mendelian errors over the total 
number of sites that are variant in at least one member 
of the trio in the cohort6 is consistent with previous data. 
Regardless of the workflow, accuracy is increased with 
DRAGEN secondary analysis, but performance is reduced 
after Joint Genotyping (Table 1).
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Figure 2: Variant-calling accuracy in high-coverage WGS data 
set—False positives and negatives for variant calling of (A) 
SNPs and (B) indels in a single sample gVCF (yellow bars) and 
multisample VCF (orange bars) after PopGen processing with 
DRAGEN secondary analysis (GG, JG) and the GATK workflow 
(JG, VQSR). 

https://science-docs.illumina.com/documents/Informatics/dragen-v3-accuracy-appnote-html-970-2019-006/Content/Source/Informatics/Dragen/dragen-v3-accuracy-appnote-970-2019-006/dragen-v3-accuracy-appnote-970-2019-006.html
https://science-docs.illumina.com/documents/Informatics/dragen-v3-accuracy-appnote-html-970-2019-006/Content/Source/Informatics/Dragen/dragen-v3-accuracy-appnote-970-2019-006/dragen-v3-accuracy-appnote-970-2019-006.html
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Table 1: Calculation of Mendelian errors in a trio present in the high-coverage WGS cohort

Mendelian errors GATK Joint Genotyper GATK VQSR DRAGEN gVCF 
Genotyper

DRAGEN Joint 
Genotyper

Inside confident regions 1808/139,375 
(1.30%)

833/133,195 
(0.63%)

315/127,220 
(0.25%)

385/127,667 
(0.30%)

Whole chromosome 17 10,433/220,814 
(4.72%)

5272/184,275 
(2.86%)

4540/179,197 
(2.53%)

5318/186,933 
(2.84%)
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Figure 3: ROC curves after cohort analysis in high-coverage WGS—Computed ROC curves for single-sample gVCFs (left panels) and 
multisample VCFs (right panels) output from cohort analysis workflows. 
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Effect of sample size on cohort analysis

The effect of sample size on the performance of DRAGEN 
Joint Genotyping was evaluated by comparing ge-
nome-wide accuracy metrics with increasing numbers 
of 3, 6, 10, 50, and 100 samples. Compared to baseline 
metrics with a single sample, we saw a decrease in false 
negatives and an increase in false positives for SNPs 
(Figure 4A), and increases in both metrics for indels 
(Figure 4B). As before, joint calling methods do not provide 
gains for DRAGEN single-sample gVCFs, which include 
models of PCR-induced and pileup correlated errors.
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Figure 4: Effect of sample size on joint genotyping—False 
positives and negatives for (A) SNPs and (B) indels plotted after 
joint genotyping with DRAGEN secondary analysis for increasing 
sample sizes in high-coverage WGS data set.

Low-coverage WGS
To investigate the potential benefit of joint genotyping 
at lower coverages, we downsampled the alignments 
from the 1000 Genomes cohort to 15× and reprocessed 
them with DRAGEN secondary analysis. A region consist-
ing of the first 10 Mbp of chromosome 17 was selected 
for this analysis. gVCFs from the downsampled data 
were aggregated and joint genotyped and performance 
was measured using ROC metrics for the NA12878 
truth sample.

Results

The performance in a low-coverage WGS data set was 
measured by extracting the column containing NA12878 
truth sample from the multisample VCF and plotting error 
counts after both gVCF Genotyper and Joint Genotyper. 
Results are similar to high-coverage data, with gains 
in SNP sensitivity outweighed by losses in specificity 
(Figure 5A) and indel calling showing regressions on all 
metrics (Figure 5B).

High-coverage WES data set
The performance of the DRAGEN Joint Genotyper in WES 
data was measured using a panel of 10 samples com-
prising eight unrelated samples from the CEU population 
and two children from the GIAB trios. Joint genotyping 
was performed on subsets comprising of 1, 3, 4, 6, 8, and 
10 samples. Performance was measured within the exome 
capture regions, using ROC metrics in the NA12878 truth 
sample. 

Results

Calls from the different subsets were assessed by extract-
ing the column containing the truth sample NA12878 from 
the multisample VCF output and plotting ROC curves. As in 
the other analyses, no visible benefit from joint genotyp-
ing more samples was observed (Figure 6). The preferred 
DRAGEN PopGen workflow stops after running the gVCF 
Genotyper and omits the joint genotyping step (Figure 7).
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Figure 5: Variant calling accuracy in low-coverage WGS data set—
False positives and negatives for variant calling of (A) SNPs and (B) 
indels in multisample VCF after PopGen processing with DRAGEN 
secondary analysis (GG, JG) comparing sequencing coverages of 
15× and 35×.
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Figure 7: Recommended DRAGEN PopGen workflow.

Summary
The established GATK best practices workflow for cohort 
data processing and analysis includes a joint genotyping 
step where cohort information is used to improve genotype 
calls in individual samples. However, based on the results 
presented in this technical note, joint genotyping as im-
plemented by the GATK workflow is not recommended for 
use with DRAGEN secondary analysis for large cohorts of 
well-covered samples (at least 30× coverage) due to risks 
of introducing errors, high computation times, and costs. 

The preferred DRAGEN PopGen workflow stops after 
running the gVCF Genotyper and omits the joint genotyp-
ing step. This results in aggregation of individual gVCFs 
and produces a multisample VCF with analysis-ready 
variants. This simplified workflow with DRAGEN secondary 
analysis delivers highly accurate population call sets in a 
flexible and efficient manner. 
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