Genomic Surveillance Methods

NGS genomic surveillance

Identify and track infectious disease threats

Genomic surveillance with next-generation sequencing (NGS) can track infectious disease transmission and identify novel strains of coronavirus and other emerging pathogens. With near complete sequence data of pathogen genomes, we can implement effective infectious disease surveillance strategies to help prevent further transmission and infection.

Infectious disease surveillance with NGS can:

  • Track the transmission routes of infectious diseases globally
  • Determine how quickly pathogens such as coronaviruses are mutating as they spread
  • Identify novel and known mutations in pathogens like coronavirus, influenza A & B and more
  • Study infectious disease therapy resistance
  • Investigate vaccine evasion mechanisms

Genomic surveillance helps public health officials track the path of an epidemic, perform contact tracing, determine the rate of pathogen evolution, and understand if a pathogen is changing in ways that could impact diagnostic or therapeutic effectiveness.

Compare NGS pathogen surveillance methods

NGS-based methods for pathogen surveillance deliver detection capabilities with exceptional scalability, speed, and compatibility for high throughput applications. These methods are generally categorized into three main applications: whole-genome analysis using amplicon sequencing, targeted analysis via hybrid capture sequencing, and comprehensive sampling analysis with shotgun metagenomic sequencing. Choosing the specific approach for pathogen detection depends on the testing needs and laboratory capabilities as shown in the table below.

Amplicon Sequencing

Detect and fully characterize a known virus. Whole genome sequencing via an amplicon approach is ideal for known viruses with small genomes. This method involves analyzing genomic regions of interest with ultra-deep sequencing of PCR amplicons.

Hybrid Capture Sequencing

Detect and characterize coronaviruses, flu viruses, and other pathogenic organisms, as well as associated antimicrobial resistance alleles. These insights can help public health officials monitor outbreaks and optimize infection control strategies. This method captures genomic regions of interest via hybridization to target-specific probes.

Shotgun Metagenomics

Comprehensively sequence all organisms in a given sample and identify novel, or emerging pathogens such as mokeypox virus. This NGS method can help accelerate outbreak investigations and support development of new laboratory tests.

Compare NGS Pathogen Surveillance Methods

Testing Needs Amplicon Hybrid Capture Shotgun Metagenomics
Speed & Turnaround Time      
Scalable & Cost-Effective      
Identify Novel Pathogens      
Track Transmission      
Detect Mutations      
Identify Co-Infections & Complex Disease      
Detect Antimicrobial Resistance      

Adequately meets laboratory testing needs

Partially meets laboratory testing needs

More About Infectious Disease Surveillance Sequencing Methods

Amplicon Sequencing

Detect and fully characterize a known virus. Whole genome sequencing via an amplicon approach is ideal for known viruses with small genomes. This method involves analyzing genomic regions of interest with ultra-deep sequencing of PCR amplicons.

Hybrid Capture Sequencing

Detect and characterize coronaviruses, flu viruses, and other pathogenic organisms, as well as associated antimicrobial resistance alleles. These insights can help public health officials monitor outbreaks and optimize infection control strategies. This method captures genomic regions of interest via hybridization to target-specific probes.

Shotgun Metagenomics

Comprehensively sequence all organisms in a given sample and identify novel, or emerging pathogens such as mokeypox virus. This NGS method can help accelerate outbreak investigations and support development of new laboratory tests.

FAQs

At a basic level, diagnostic testing helps clinicians manage patients, and infectious disease surveillance is required to manage populations.

Diagnostic testing provides important yes/no answers for individual patients so that appropriate management can be provided.

Surveillance helps public health officials track the path of the epidemic, understand transmission routes, perform contact tracing, determine the rate of viral evolution, and understand if the virus is changing in ways that could impact diagnostic or therapeutic effectiveness.

NGS can provide unbiased detection of a novel pathogen in patient samples without prior knowledge of the organism.

A key challenge in infectious disease detection is that many of the microbes, including viruses, that cause respiratory, digestive, and other diseases in humans, have not been researched and characterized and thus are not known or detected by targeted approaches such as PCR. Development of PCR assays requires knowledge of the pathogen genome. NGS plays a critical role in discovering these unknown, novel pathogens; the resulting genome sequence can then be used to develop routine tests such as PCR to help clinicians manage patients.

NGS can be used to track the evolution of the pathogen genome to help public health officials monitor the spread of infection and determine the best isolation plan at a population level. Sequencing the virus from different patients over time can determine the rate of viral evolution, and address whether the virus is changing in ways that could impact pathogenicity as well as diagnostic or therapeutic effectiveness. PCR is designed to detect the presence of specific regions of the pathogen genome and will not identify new mutations across rapidly evolving pathogen genomes. Furthermore, PCR performance can suffer if mutations occur in the primer or probe binding regions.

Epidemiologists can utilize NGS to study viral genome mutations from patient samples across the globe. They can use this information to build a genetic tree (or map) that can indicate the path of transmission between patients. Clusters due to genetic similarities in the pathogen belong to patients within the same transmission chains. These transmission chains allow public health officials to quickly determine the pathogen origin, track the path of the epidemic, understand transmission routes, and inform appropriate containment measures.

A shotgun metagenomics workflow enables sequencing of both novel and known species. During an outbreak involving an unknown pathogen, multiple molecular diagnostic tests are often utilized; this may lead to unnecessary costs and delays in identifying the pathogen. Shotgun metagenomics can be used as a single comprehensive screening assay for identifying and characterizing pathogens. This research workflow can help accelerate outbreak investigations and support development of new lab tests for large-scale screening efforts.

Once a pathogen such as SARS-CoV-2 is identified, a hybrid capture workflow can provide the high sensitivity needed to detect the virus, and provide information about its epidemiology and evolution. This information can help researchers optimize infection control strategies, including monitoring when it's acceptable to de-escalate isolation mechanisms and resume normal activities, and aid in the development of vaccines.

These complementary workflows using Illumina sequencing can be performed alongside traditional testing methods and integrated into a comprehensive outbreak response model.

The Respiratory Virus Oligo Panel includes 7,800 probes to sequence common respiratory viruses, recent flu strains, SARS-CoV-2, and other coronaviruses, as well as human probes to act as positive controls. These probes are 80-mer oligos, spaced very close together, providing full genome coverage of all viruses in the panel. Table of viruses in the panel:

  • Human coronavirus 229E
  • Human coronavirus NL63
  • Human coronavirus OC43
  • Human coronavirus HKU1
  • SARS-CoV-2
  • Human adenovirus B1
  • Human adenovirus C2
  • Human adenovirus E4
  • Human bocavirus 1 (Primate bocaparvovirus 1 isolate st2)
  • Human bocavirus 2c PK isolate PK-5510
  • Human bocavirus 3
  • Human parainfluenza virus 1
  • Human parainfluenza virus 2
  • Human parainfluenza virus 3
  • Human parainfluenza virus 4a
  • Human metapneumovirus (CAN97-83)
  • Respiratory syncytial virus (type A)
  • Human Respiratory syncytial virus 9320 (type B)
  • Influenza A virus (A/Puerto Rico/8/1934(H1N1))
  • Influenza A virus (A/Korea/426/1968(H2N2))
  • Influenza A virus (A/New York/392/2004(H3N2))
  • Influenza A virus (A/goose/Guangdong/1/1996(H5N1))
  • Human bocavirus 4 NI strain HBoV4-NI-385
  • KI polyomavirus Stockholm 60
  • WU Polyomavirus
  • Human parechovirus type 1 PicoBank/HPeV1/a
  • Human parechovirus 6
  • Human rhinovirus A89
  • Human rhinovirus C (strain 024)
  • Human rhinovirus B14
  • Human enterovirus C104 strain: AK11
  • Human enterovirus C109 isolate NICA08-4327
  • Influenza A virus (A/Zhejiang/DTID-ZJU01/2013(H7N9))
  • Influenza A virus (A/Hong Kong/1073/99(H9N2))
  • Influenza A virus (A/Texas/50/2012(H3N2))
  • Influenza A virus (A/Michigan/45/2015(H1N1))
  • Influenza B virus (B/Lee/1940)
  • Influenza B virus (B/Wisconsin/01/2010)
  • Influenza B virus (B/Brisbane/60/2008)
  • Influenza B virus (B/Colorado/06/2017)
  • Influenza B virus (B/Washington/02/2019)
  • Human control genes

Hybrid capture is a resequencing method that captures genomic regions of interest by hybridization to target-specific biotinylated probes. Enrichment through hybrid–capture methods allows for highly sensitive detection and therefore does not require high read depth. Additionally, the hybrid capture NGS workflow allows for near-complete sequence data of targets and opens up applications such as variant analysis for viral evolution or viral surveillance.

Alternatively, amplicon sequencing is designed to detect the presence of the target pathogen in a sample by identifying specific regions of the pathogen genome. This method does not enable identification of new mutations across rapidly evolving pathogen genomes (as is required for viral evolution or viral surveillance studies).

The hybrid capture NGS workflow allows for near-complete sequence data of targets and opens up applications such as variant analysis for coronavirus evolution or viral surveillance studies. Compared to other targeted resequencing methods, such as amplicon sequencing, enrichment through hybrid capture allows for dramatically larger probe panels with more comprehensive profiling of the target regions. Additionally, the oligo probes used for hybrid–capture protocols remain effective even within highly mutagenic regions (which can be difficult for amplicon-based assays such as qPCR), allowing targeting of rapidly evolving viruses such as RNA viruses.

Once a pathogen like the SARS-CoV-2 coronavirus has been identified, amplicon sequencing can provide cost-effective, rapid, and scalable detection of the pathogen. When used as a general whole-genome sequencing diagnostic approach, it allows for broader target coverage, making it less susceptible to mutational effects. For research, viral whole-genome sequencing can be used to monitor viral mutations and allows phylogenetic analysis.

Once a pathogen like the SARS-CoV-2 coronavirus has been identified, a viral enrichment sequencing panel provides high sensitivity detection coupled with epidemiology information by detecting the full genome and the genomic mutations found across different samples. This information helps define the epidemiology of transmission and can assist public health officials in optimizing infection control strategies.

The Illumina Respiratory Virus Oligo Panel expands detection to ~30 families of respiratory viruses and allows researchers to study co-infections with other viruses in the panel.

The Illumina COVIDSeq Test (3076 samples) and COVIDSeq Assay (96 samples) are amplicon-based NGS products designed to detect RNA from the SARS-CoV-2 virus.

Learn more about: Illumina COVIDSeq Test (EUA) / Illumina COVIDSeq Test (RUO) / COVIDSeq Assay (96 samples)

Visit our Sequencing Platforms page to explore our portfolio. The choice of sequencer depends on which method(s) you use most frequently. See the workflows above for recommendations on which sequencer is optimal for which method.

Surveillance of Infectious Disease through Wastewater Sequencing

Learn how to use wastewater sequencing to monitor SARS-CoV-2 variants and other respiratory viruses in the community.

Read Application Note

Infectious Disease Surveillance Webinars

NGS for SARS-CoV-2 Detection and Surveillance

NGS has broad applicability for responding to the SARS-CoV-2 pandemic, from initial detection and characterization to monitoring, surveillance, and diagnostic detection.

View Webinar
Role of Genomics in Global COVID-19 Surveillance

Join change-makers, thought leaders, and industry shapers for a discussion about the role of genomics in infectious disease surveillance.

View Webinar
Targeted Enrichment for Disease and AMR Detection

Earlier and more comprehensive detection of infectious pathogens and antimicrobial resistance (AMR) markers can help optimize patient management and treatment.

View Webinar

Featured Products

COVIDSeq Family
COVIDSeq Family

COVIDSeq Assay and COVIDSeq Test are amplicon-based next-generation sequencing (NGS) assays designed to help public health labs identify novel strains of SARS-CoV-2.

iSeq 100
iSeq 100

The iSeq 100 system leverages the speed and affordability of complementary metal-oxide-semiconductor (CMOS) technology and the accuracy of sequencing by synthesis (SBS) chemistry.

kit for Illumina Respiratory Virus Enrichment
Illumina Respiratory Virus Enrichment Kit

The Illumina Respiratory Virus Enrichment Kit allows researchers to obtain whole-genome next-generation sequencing (NGS) data for over 40 important respiratory viruses including SARS-CoV-2 and influenza A/B viruses.

Viral Surveillance Panel
Using the Viral Surveillance Panel with Illumina RNA Prep with Enrichment kit allows researchers to obtain whole genome sequencing (WGS) data that can characterize 66 viruses that are of high risk to public health, including SARS-CoV-2, Influenza, Monkeypox Virus, and Poliovirus, allowing for proactive, broad pathogen surveillance.
Preventing the Next Pandemic

Preventing the Next Pandemic

Up to 75% of new or emerging infectious diseases are estimated to have zoonotic origins.1,2 We now know that zoonotic reservoirs are significant in the spread of pathogens. With NGS, it is possible to screen reservoir animals such as bats to predict and prevent viral pathogen outbreaks.

Infectious disease surveillance with NGS-based hybrid capture or metagenomics can help us understand interspecies transmission, how zoonotic diseases emerge, spread and become resistant to common therapies, and enable us to better contain, treat and prevent disease outbreaks.

Hybrid capture sequencing can be scaled up to monitor zoonotic pathogens, while genomic surveillance with metagenomics allows for unbiased, culture-free detection and identification of a broad number of pathogens. Metagenomics also helps us understand the relationship between our microbiome and pathogen interactions, which is important when designing measures to control infectious diseases.

Learn more about:

Target Enrichment

Metagenomic Sequencing

More Infectious Disease Surveillance Applications

Coronavirus Surveillance

NGS provides unbiased identification of new coronavirus strains. Illumina offers rapid detection of SARS-CoV-2 coronavirus mutations to meet the demands for efficient sequencing needs.

Tuberculosis surveillance

Learn about Integrative NGS-based solutions for tuberculosis detection, characterization, and analysis.

Wastewater Surveillance

Wastewater surveillance is a method to detect, identify and characterize pathogens found in wastewater. This method provides data to help monitor outbreaks and other threats at the community level.

Healthcare-Associated Infection Surveillance

NGS-based bacterial genome sequencing paired with user-friendly bioMérieux software allows comprehensive isolate discrimination and characterization.

Illumina Microbial Amplicon Prep for viral surveillance

Download the application note to see how to get comprehensive coverage across diverse viral genomes for effective surveillance.

Frequently Purchased Together

Get help finding the right infectious disease surveillance solution for your needs.

Genomic Surveillance News

Budi Hermawan’s long fight against tuberculosis
Read More
The future of precision metagenomics in treating infectious disease
Read More
Inside a Mumbai lab using genomics for tuberculosis surveillance
Read More
Fighting drug-resistant tuberculosis in South Africa
Read More
Realizing the potential of pathogen genomics in Africa
Read More

Featured Genomic Surveillance Publications

Monkeypox virus multiplexed PCR amplicon sequencing (PrimalSeq) V.2.
Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus
Genome Sequencing of Sewage Detects Regionally Prevalent SARS-CoV-2 Variants
Genomic surveillance at scale is required to detect newly emerging strains at an early timepoint
Discovery of Bat Coronaviruses through Surveillance and Probe Capture-Based NGS
References